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We set forth an information-theoretical measure to quantify neurotrans-
mission reliability while taking into full account the metrical properties
of the spike train space. This parametric information analysis relies on
similarity measures induced by the metrical relations between neural
responses as spikes flow in. Thus, in order to assess the entropy, the con-
ditional entropy, and the overall information transfer, this method does
not require any a priori decoding algorithm to partition the space into
equivalence classes. It therefore allows the optimal parameters of a class
of distances to be determined with respect to information transmission.
To validate the proposed information-theoretical approach, we study pre-
cise temporal decoding of human somatosensory signals recorded using
microneurography experiments. For this analysis, we employ a similarity
measure based on the Victor-Purpura spike train metrics. We show that
with appropriate parameters of this distance, the relative spike times of
the mechanoreceptors’ responses convey enough information to perform
optimal discrimination—defined as maximum metrical information and
zero conditional entropy—of 81 distinct stimuli within 40 ms of the first
afferent spike. The proposed information-theoretical measure proves to
be a suitable generalization of Shannon mutual information in order to
consider the metrics of temporal codes explicitly. It allows neurotrans-
mission reliability to be assessed in the presence of large spike train
spaces (e.g., neural population codes) with high temporal precision.

Neural Computation 23, 852–881 (2011) C© 2011 Massachusetts Institute of Technology



Quantifying Reliability Through Metrics-Based Information Analysis 853

1 Introduction

Shannon information theory provides a mathematical framework to char-
acterize the input-output relationship of probabilistic communication sys-
tems (Shannon, 1948; Cover & Thomas, 1991). Neural information pro-
cessing involves multistage transmission mechanisms in which neurons,
as well as neural populations, act as stochastic communication channels.
Information-theoretical tools can then be used to quantify the knowledge
encoded in neural responses and the reliability of neural encoding and de-
coding mechanisms (MacKay & McCulloch, 1952; Bialek, Rieke, de Ruyter
van Steveninck, & Warland, 1991; Deco & Obradovic, 1997; Rieke, Warland,
de Ruyter van Steveninck, & Bialek, 1997; Borst & Theunissen, 1999).

Here we propose an extension of Shannon information theory that ac-
counts for the metrical properties of spike time patterns to assess neuro-
transmission. In contrast to Shannon mutual information (MI), which pro-
vides an upper bound of the knowledge that an ideal observer can extract
from neural responses (Borst & Theunissen, 1999; Quian Quiroga & Panzeri,
2009), the metrical mutual information defined here can reflect the prop-
erties of an actual neural decoder (e.g., its temporal selectivity capability).
It provides a parametric information analysis of the statistical dependence
between stimulus and neural response. The parametric nature of the anal-
ysis comes from its dependence on a similarity measure that quantifies, as
spikes flow in, the metrical relations represented by the temporal code.

A large body of work has been done to assess the capacity of neurons to
process afferent signals and transmit meaningful accounts of their inputs
to downstream neural stages (see Quian Quiroga & Panzeri, 2009, for a
recent review). Henceforth, we review existing information-theoretical ap-
proaches to estimate neurotransmission reliability (see section 2). We stress
the importance of reducing the dimensionality of the event space (formed
by spike train patterns) by preserving the information content of spatiotem-
poral codes. In section 3, we set forth a metrical information analysis based
on a novel definition of entropy that embeds an explicit measure of the met-
rical relations between input-output events. In section 4, we validate the
metrical information analysis on a data set of human microneurography
recordings and perform a temporal decoding analysis of the responses of
fingertip mechanoreceptors to tactile stimulation (Johansson & Birznieks,
2004). Finally, in section 5, we discuss the approach with respect to existing
methods.

2 Information-Theoretical Analysis of Neural Codes

Information-theoretical approaches have characterized neurotransmission
at different organization levels, from single synapses (e.g., Zador, 1998;
Manwani & Koch, 2001; Tiesinga, 2001; Fuhrmann, Segev, Markram, &
Tsodyks, 2002; London, Schreibman, Häusser, Larkum, & Segev, 2002;
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Manwani, Steinmetz, & Koch, 2002; Goldman, 2004), to single-cell responses
(e.g., Theunissen & Miller, 1991; de Ruyter van Steveninck, Lewen, Strong,
Koberle, & Bialek, 1997; Borst & Theunissen, 1999; Tiesinga, Fellous, José, &
Sejnowski, 2002; Butts & Goldman, 2006; Sharpee et al., 2006; Arleo, Nieus,
Bezzi, D’Errico, D’Angelo, & Coenen, 2010), to neural population activity
(e.g., Brenner, Strong, Koberle, Bialek, & de Ruyter van Steveninck, 2000; Re-
ich, Mechler, & Victor, 2001; Lu & Wang, 2004; Smith & Lewicki, 2006; Saal,
Vijayakumar, & Johansson, 2009; Quian Quiroga & Panzeri, 2009). Also, nu-
merous studies on sensory neural processing (e.g., Richmond & Optican,
1990; Buracas, Zador, DeWeese, & Albright, 1998; Panzeri, Petersen, Schultz,
Lebedev, & Diamond, 2001; Paz & Vaadia, 2004; Rainer, Lee, & Logothetis,
2004; Einhauser, Mundhenk, Baldi, Koch, & Itti, 2007) have demonstrated
the relevance of stimulus-specific information transmission measures (see,
e.g., DeWeese & Meister, 1999, for a review). Finally, recent work (Thomson
& Kristan, 2005; Victor & Nirenberg, 2008; Quian Quiroga & Panzeri, 2009)
has begun to elucidate the relation between information-theoretical analysis
and more explicit decoding schemes to infer the most likely stimulus that
elicited an observed response (e.g., Bayesian algorithms, k-nearest neighbor
decoders, and population vector approaches; see reviews by Rieke et al.,
1997; Brunel & Nadal, 1998; Borst & Theunissen, 1999; Pouget, Dayan, &
Zemel, 2000; Dayan & Abbott, 2001).

Shannon mutual information (MI) estimates the average amount of
knowledge that can be extracted from the neural responses r ∈ R to the
inputs s ∈ S (both considered as probabilistic variables) as

I (R; S) = H(R) − H(R|S), (2.1)

where H(R) is the marginal entropy in the output events and quantifies the
intrinsic variability of the response space:

H(R) = −
∑
r∈R

p(r ) log2 p(r ), (2.2)

and H(R|S) is the conditional entropy in the response space given the input

H(R|S) = −
∑
s∈S

p(s)
∑
r∈R

p(r |s) log2 p(r |s). (2.3)

H(R|S) is also called neuronal noise (Borst & Theunissen, 1999) because
it estimates the average uncertainty in the neural response after stimulus
presentation. Shannon mutual information can then be rewritten as

I (R; S) =
∑
r,s

p(r, s) log2

(
p(r, s)

p(r )p(s)

)
. (2.4)

I (R; S) quantifies the difference between signal and noise entropy by mea-
suring how much one can learn about the stimulus by observing the neural
responses (or vice versa). I (R; S) is zero if stimuli s and responses r are
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completely uncorrelated, I (R; S) > 0 otherwise. For a given set of stimuli,
the mutual information is maximal (i.e., I (R; S) = H(R)) if and only if no re-
sponse r is elicited by two different stimuli s, that is, if there is no ambiguity
when reconstructing the input by observing the output (H(R|S) = 0).

In the following, we review some methods for estimating the entropy
and the mutual information of spiking signals, with a focus on state-space
partitioning and the use of metrics to analyze spike trains.

2.1 Event Space Quantization

2.1.1 Binary Word Coding. If the readout system considers the event state
space as discrete, probability distributions (i.e., input a priori probability
p(s), output marginal probability p(r ), conditional and joint probabilities
p(r |s) and p(r, s), respectively) can be estimated empirically on the basis of
natural equivalence classes (e.g., spike counts). In the case of continuous
event spaces (e.g., spike time), the equivalence classes will depend on the
precision of the discretization process used to partition the continuous state
space. For instance, spike trains can be processed by means of a binning pro-
cedure that maps them into binary words (see Figure 1a; Strong, Koberle,
de Ruyter van Steveninck, & Bialek, 1997; Dimitrov & Miller, 2000; London
et al., 2002), which preserves the information about spike timing up to a
certain precision (e.g., a few milliseconds). Therefore, binary word coding
relaxes the temporal resolution constraint (see, Panzeri, Senatore, Mon-
temurro, & Petersen, 2007, for a review) and allows equivalence classes
(with arbitrary borders) to be defined by reducing the dimensionality of the
input-output space. Once the equivalence classes have been defined, both
Shannon entropy and MI can be computed (see equations 2.1–2.4).

When neural responses are processed according to spike count decoding,
two spike trains r and r ′ are considered as equal if and only if they have the
same number of spikes N. That is, the following similarity measure φ(r, r ′)
is considered:

φ(r, r ′) =
{

1 if N(r ) = N(r ′)
0 otherwise

. (2.5)

When the neural decoder accounts for the timing ti of the spikes, the simi-
larity measure can be written as

φ(r, r ′) =
{

1 if ∀i, ti (r ) ∼ ti (r ′)
0 otherwise

. (2.6)

This measure obviously depends on the temporal resolution taken to deter-
mine when ti (r ) and ti (r ′) can be considered similar (ti (r ) ∼ ti (r ′)). The more
severe the similarity measure (e.g., with a temporal resolution of 1 ms),
the more precise the decoding process, and the smaller the information
loss when processing the neural responses. Yet precise temporal decoding
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Figure 1: Methods: (a) Binary word decoding of neural responses. Time is
partitioned according to a fixed temporal resolution �t. If a spike occurs within
a given time bin, the latter is assigned 1, otherwise 0. Besides potential disregard
of action potentials (i.e., multiple spikes might occur within the same temporal
bin), the binning procedure is prone to anisotropy effects: spike trains r1 and r2

are considered identical, whereas r2 and r3 are considered different (although
the spike times of r2 and r3 are closer than those of r1 and r2). (b) Example of
evolution of the metrical entropy (dashed curve) of a gaussian distribution of
events (continuous curve) as a function of the cutoff when taking a Heaviside
similarity measure (i.e., the similarity function is 1 for distances below the cutoff
value and 0 otherwise). (c) In this toy example, the maximum intrastimulus
distance maxDintra is smaller than the minimal interstimulus distance minDinter .
Thus, we are in the perfect discrimination condition: I ∗(R; S) is maximal and
H∗(R|S) is nil.
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makes it computationally intractable to estimate the Shannon entropy of
spiking signals as the number of events increases, or their jitter is large, or
in the presence of large neural populations (the curse of dimensionality;
Borst & Theunissen, 1999; Quian Quiroga & Panzeri, 2009) because of a
dramatic undersampling of the response space.

Note that binary word coding guarantees the transitivity of identity—
r ∼ r ′ and r ′ ∼ r ′′ ⇒ r ∼ r ′′—but the binning procedure is prone to lo-
cal anisotropy effects on the similarity measurements (see Figure 1a). For
example, given a partitioning based on time bins of �t = 5 ms, two spikes
separated by 4 ms may be considered identical, whereas two spikes sepa-
rated by 1 ms may be considered different.

2.1.2 State-Space Discretization Based on Rate Distortion Theory. Rate dis-
tortion theory (RDT) (Cover & Thomas, 1991) has been extensively used
to study neural encoding and decoding through an information-theoretical
approach. The goal is to find a compression (discretization) of the response
space such that the information about the stimuli is preserved. The com-
pression keeps the features of the code that are relevant for information
transmission and discards the irrelevant ones. More technically, it amounts
to finding an optimal quantization (partitioning into equivalence classes)
of the response space with respect to a distortion (or cost) function.

In Tishby, Pereira, and Bialek (1999) and Schneidman, Slonim, Tishby,
de Ruyter van Steveninck, and Bialek (2002), the cost function to be mini-
mized is L(p(r̃ |r )) = I (R̃; R) − β I (R̃; S), where R̃ is a compressed version
of R. The goal is to find the quantization R̃ capturing the most informa-
tion about the input S while discarding the unnecessary variability of the
responses. The factor β determines the trade-off between quality of trans-
mission and compression level. In Dimitrov, Miller, Aldworth, and Gedeon
(2001) and Dimitrov, Miller, Gedeon, Aldworth, and Parker (2003), the state-
space discretization R̃ of R is optimized with respect to a distortion func-
tion DI (R, R̃) = I (S; R) − I (S; R̃) (with the same notation as above). This
function estimates the loss of information when a quantization of the re-
sponse space is applied. The optimal quantization is the one that maximizes
H(R̃|R) (i.e., it makes no further assumption on the code) while keeping
the distortion function below some fixed threshold D. Both approaches
aim at determining the codebook (or dictionary) between input and output
and, thus, finding natural timescales for encoding information (Dimitrov &
Miller, 2000).

2.2 Spike Train Metrical Analysis. A solution to avoid the discretiza-
tion of the event space for the calculation of I (R; S) is to account for
spike train metrics (Victor & Purpura, 1996; Van Rossum, 2001; Quian
Quiroga, Kreuz, & Grassberger, 2002; Aronov, Reich, Mechler, & Victor,
2003; Schreiber, Fellous, Whitmer, Tiesinga, & Sejnowski, 2003; Kreuz, Haas,
Morelli, Abarbanel, & Politi, 2007; Houghton & Sen, 2008). For instance, a
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well-established approach consists of estimating the Victor-Purpura (VP)
distances between the neural responses (Victor & Purpura, 1996) and classi-
fying them according to a clustering method such as the k-nearest neighbor
algorithm (Duda, Hart, & Stork, 2001). That is, the response is assigned the
class that constitutes the majority among its k-nearest neighbor responses
(the positive-definite integer k being a free parameter of the method). This
classification allows the so-called confusion matrix Ci j to be computed,
whose terms are the probability of classifying a response to the i th stimulus
as a response to the j th stimulus. In the presence of perfect decoding, the
main diagonal of the confusion matrix Ci j should be equal to 1, whereas
all the other entries should be zero. The use of VP spike train metrics
coupled to clustering methods (e.g., k-nearest neighbors) to generate con-
fusion matrices has proved to be suitable to estimate the lower bounds of
Shannon mutual information I (R; S) in sensory information processing, for
example, auditory (Huetz, Del Negro, Lebas, Tarroux, & Edeline, 2006) and
somatosensory (Saal et al., 2009).

Although this approach takes into account the metrical properties of the
event space to compute Shannon mutual information, once equivalence
classes have been defined, the metrics are forgotten. Whether the clusters
are close to each other or far apart no longer influences the estimation of
I (R; S). In other words, spike train metrics is not explicitly embedded into
the calculation of mutual information, which does not depend on either the
shape of the clusters or the distance between them.

3 Metrical Information Theory:
From Equivalence Classes to Distances

3.1 Extension of Shannon Entropy. Shannon entropy calls on a simi-
larity measure φ(r, r ′) that can be thought of as a Kronecker function of two
responses r, r ′ ∈ R:

φ(r, r ′) = 1 ⇔ r = r ′. (3.1)

As a consequence, two events can be only identical or different (i.e., two
slightly different or two very different events are treated the same way).
This makes Shannon entropy diffeomorphism-invariant (or topological)
because whether the mapping between S and R is random or isometric
does not influence Shannon mutual information.

We propose an extension of Shannon entropy on the response space that
is defined as follows,

H∗(R) = −
∑
r∈R

p(r ) log2

(∑
r ′∈R

p(r ′)φ(r, r ′)

)
, (3.2)

where R is the set of events and φ(r, r ′) is a yet unspecified similarity
measure between the events r and r ′. In the general framework, the simi-
larity measure can be any real function with values in [0, 1]. The contrast
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with Shannon entropy is the logarithm argument: instead of p(r ), we have∑
r ′∈R p(r ′)φ(r, r ′). It can thus be noted that:
� The logarithm argument is always higher than the probability of r

because∑
r ′∈R

p(r ′)φ(r, r ′) = p(r ) +
∑

r ′∈R,r ′ 
=r

p(r ′)φ(r, r ′),

the second term being positive. Therefore, this entropy is always lower
than the Shannon entropy.

� If the similarity measure φ(r, r ′) is taken to be a Kronecker delta, then
the logarithm argument of equation 3.2 is equal to p(r ), and thus
H∗(R) reduces to the Shannon entropy.

� Although the similarity measure is not specified yet, it can be seen
that the broader φ(r, r ′), the lower the entropy H∗(R).

� If ∀r, r ′ ∈ R, φ(r, r ′) = 1, the entropy is nil.

An extension of the conditional entropy on the response given a specific
stimulus s ∈ S can then be defined as

H∗(R|s) = −
∑
r∈R

p(r |s) log2

(∑
r ′∈R

p(r ′|s)φ(r, r ′)

)
, (3.3)

and its average over the entire set of stimuli S gives

H∗(R|S) =
∑
s∈S

p(s)H(R|s) = −
∑
s∈S

∑
r∈R

p(r, s) log2

(∑
r ′∈R

p(r ′|s)φ(r, r ′)

)
.

(3.4)

Finally, similar to Shannon MI, the mutual information I ∗(R; S) is taken as
a difference between marginal and conditional entropies:

I ∗(R; S) = H∗(R) − H∗(R|S) (3.5)

=
∑
s∈S

∑
r∈R

p(r, s) log2

(∑
r ′∈R p(r ′|s)φ(r, r ′)∑

r ′∈R p(r ′)φ(r, r ′)

)
. (3.6)

This is the general framework of the theory. It encompasses as a specific case
the unbinned Shannon entropy but also the binning procedure, where all
the events belonging to the same bin have similarity equal to 1, while two
events in different bins have similarity equal to 0. The codebook method
can also be restated within this framework.

3.2 Metrical Entropy. In order to account for the metrical relations be-
tween events, we propose to define the similarity measure as a decreasing
function of the distance between two events, following the intuitive idea
that a distance provides a measure of dissimilarity. We thus call H∗ a met-
rical entropy. Figure 1b shows an example of the metrical entropy (dashed
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curve) for a one-dimensional gaussian distribution of events (solid curve)
when defining the similarity measure as a Heaviside function of the dis-
tance between two events: φ(r, r ′) = H(Dcritic − d(r, r ′)). Henceforth, we will
focus on this form for φ. When the cutoff Dcritic (or critical distance) of the
Heaviside function is zero, we get back to Shannon entropy, and when it
goes to infinity, the metrical entropy becomes zero.

When applying the metrical information analysis to neurotransmission,
we first need to select a distance function on the event space and define
a class of similarity measures (see section 3.2.1), for example, a Heaviside
function of the distance. Then we define an optimality condition for effi-
cient neurotransmission in section 3.2.2. Finally, we determine the optimal
values of the parameters with respect to the defined optimality condition
in section 3.2.3.

3.2.1 Definition of the Similarity Measure. When the event space consists of
spiking signals, a method to quantify the distance between neural responses
is offered by the Victor-Purpura (VP) spike train metrics (Victor & Purpura,
1996), though other metrics may be suitable as well. We define the similarity
measure φ(r, r ′) as a function of the VP distance DV P (r, r ′) between two re-
sponses r and r ′. The distance DV P (r, r ′) depends on the VP cost parameter
CV P (Victor & Purpura, 1996), which determines the timescale of the tem-
poral coding analysis. The cost parameter CV P regulates the influence of
spike timing versus spike count when calculating the VP distance between
r and r ′. As stated above, we wish to define the similarity as a decreasing
function of the distance. A simple way to do that is to take a Heaviside step
function of the distance DV P (r, r ′),

φ(r, r ′) = H(Dcritic − DV P (r, r ′)), (3.7)

where the critical distance Dcritic is the cutoff parameter: as long as
DV P (r, r ′) < Dcritic the responses r, r ′ are considered to be identical; oth-
erwise they are classified as different. Note that if Dcritic = 0, one recovers
the Shannon entropy from equation 3.2.

It is worth mentioning that by taking a similarity measure different
from the Kronecker delta, we introduce a bias in the computation of the
entropy H∗(R) (because any φ other than the Kronecker delta can only
reduce the estimate). This bias depends on the characteristics of the read-
out system, for example, the properties of a downstream neural popula-
tion. A consequence of this bias is that the metrical information I ∗ is not
diffeomorphism-invariant (in contrast to Shannon mutual information) but
rather depends on the metrical organization of events. Note also that since
we take a similarity measure that depends on the DV P (r, r ′) distance only,
the metrical quantities are invariant under the isometry group and under
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isotropic homotheties (i.e., affine transformations preserving the ratios be-
tween event distances).

3.2.2 Optimality Condition for Efficient Neurotransmission. In the zero-
noise limit, optimal feedforward information processing would require
maximizing the metrical information I ∗(R; S) according to an infomax-like
principle (Linsker, 1988; Bell & Sejnowski, 1995; Nadal, Brunel, & Parga,
1998). However, since neural information processing is not noise free and
occurs through multiple encoding and decoding stages, the issue of mini-
mizing the variability on the output representation at each stage constitutes
a major requirement. Therefore, akin to the principle of redundancy reduc-
tion proposed for biological sensory processing by Barlow (1961), the met-
rical conditional entropy H∗(R|S) constitutes a fundamental quantity for
neurotransmission, and neural information processing should both maxi-
mize the metrical information I ∗(R; S) and (at the same time) minimize the
conditional entropy H∗(R|S). This perfect discrimination condition is met
when all the responses elicited by the same stimulus are strictly identical
(φ = 1), whereas all the pairs of outputs elicited by two distinct stimuli are
strictly different (φ = 0). In the sequel, we will also refer to this situation as
the optimal discrimination condition.

According to this optimality principle, a neural encoder should provide
that any response is not elicited by two different stimuli and that the re-
sponses elicited by any stimulus remain as close as possible. If a neural
encoder were not behaving this way, then a single stimulus would possi-
bly elicit many different responses. How could this be effectively decoded
by a downstream neural population? In other words, neural information
processing requires encoding mechanisms capable of producing as few
responses as possible to a given stimulus while keeping these responses
different between stimuli (i.e., sparse coding; see, e.g., Földiák, 1990; Nadal
& Toulouse, 1998; Olshausen & Field, 1996; Willmore & Tolhurst, 2001). It is
worth mentioning that the idea of minimizing the conditional entropy can
be traced back at least to work by MacKay and McCulloch (1952), in which
the time resolution taken to study a spike train was chosen so that spike
timing was not affected by the jitter.

3.2.3 Determining the Parameters of the Similarity Measure. The similar-
ity measure φ(r, r ′) is the lever on which we can act to set the compro-
mise between the overall information I ∗(R; S) and the mean variability of
the response to a stimulus H∗(R|S). There are two ways of understanding
the similarity measure. On the one hand, provided that a comprehensive
knowledge of the properties of the readout system (e.g., a neural decoder)
is available, the selectivity level (i.e., the cutoff distance Dcritic) of the simi-
larity measure should account for the specific properties of the reader (e.g.,
time constant of synaptic integration). On the other hand, if no knowledge
on the decoding system is available, the similarity measure should be set
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to allow optimal information transmission (in terms of both I ∗(R; S) and
H∗(R|S)) to be achieved in order to predict the values of the parameters
that maximize information transmission.

A reasonable way to proceed to set the optimal parameters for φ(r, r ′) is
to consider two sets of DV P (r, r ′) distances:

� The distances between the responses elicited by the same stimulus
(henceforth referred to as intrastimulus distances)

� The distances between the responses elicited by different stimuli (the
interstimulus distances).

In order to determine the optimal value for Dcritic, we compute the minimum
and maximum intrastimulus distances as well as the minimum and max-
imum interstimulus distances. The optimal coding condition, correspond-
ing to maximum I ∗(R; S) and zero H∗(R|S), occurs when the maximum
intrastimulus distance (which provides the size of the largest cluster of re-
sponses) becomes smaller than the minimum interstimulus distance (which
estimates the smallest distance between clusters of responses). We can thus
set the cut-off distance between the maximum intrastimulus distance and
the minimum interstimuli distance (see Figure 1c for a toy example).

In the case of neurotransmission, the relationship between intra- and
interstimulus distance distributions tends to evolve over time as the input
spike waves across multiple afferents flow in the readout system. Figure 2a
shows an example of intra- and interstimulus distance distributions evolv-
ing over time. The two distributions separate from each other after about
110 ms. The critical parameter Dcritic can then be taken as the distance
at which the maximum intrastimulus distance becomes smaller than the
minimum interstimulus distance (dashed line in Figure 2a). The time at
which the critical distance Dcritic can be determined indicates when per-
fect discrimination can be achieved. In other words, optimal discrimination
occurs when the distributions of intra- and interstimulus distances stop
overlapping, which means that (1) the conditional entropy H∗(R|S) is nil,
because all the responses elicited by any stimulus are identical, and (2) the
information I ∗(R; S) is maximum (i.e., equal to H∗(R)), because any two re-
sponses elicited by two different stimuli are always correctly discriminated.
Figure 2b illustrates an example of well-separated intra- and interstimulus
distance distributions (bottom). It also shows the values for I ∗(R; S) and
H∗(R|S) as a function of the critical distance parameter (top). It appears
clearly that taking 6.5 < Dcritic < 8 guarantees perfect discrimination (be-
cause within that range, I ∗(R; S) is maximum and H∗(R|S) is nil).

The critical distance Dcritic is interdependent on the VP cost parameter
CV P (Victor & Purpura, 1996). We define the optimal VP cost C∗

V P as the one
that leads to earliest perfect discrimination (in the example in Figure 2a, a
cost CV P = 0.15 led to perfect discrimination after 110 ms).

Figure 2c presents a toy example comparing the estimates provided
by Shannon mutual information (section 2), Shannon mutual information
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Figure 2: Methods: (a) Example of intra- and interstimulus distance distribu-
tions (black and gray curves, respectively) over time for a VP cost parameter
CV P = 0.15. The optimal discrimination condition is met after about 110 ms,
when the two distributions stop overlapping. (b) Example of how I ∗(R; S) and
H∗(R|S) vary as a function of the critical distance (top), given the distributions of
intra- and interstimulus distances (bottom). (c) Simple comparison of Shannon
MI, metrical space analysis, and metrical information analysis on a two-stimuli
classification example. (d) Simple example showing the additivity property of
Shannon entropy (top row) and metrical entropy (bottom row) with probabil-
ities denoted a, b, c and similarities x, y, z. (e) Local versus global metrical
information measures. Since the size of the cluster of square symbols is larger
than the distance between the clusters of crosses and circles, the global similar-
ity measure would make it impossible to maximize I ∗(R; S) while maintaining
H∗(R|S) = 0. By contrast, a local version of the metrical entropy would consider
different similarity measures for the clusters. Thus, the Dcritic for the cluster of
circles would be taken smaller than the one for the cluster of squares.
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based on metrical space analysis (section 2.2), and metrical information
analysis. It can be seen that the mutual information I ∗(R; S) captures the
metrical property of the mapping from input to output spaces. For instance,
if a stimulus s yields 10 different responses r randomly distributed on the
output space, then I ∗(R; S) is nil, because the critical distance will be very
large.

3.2.4 Additivity Property of Metrical Information. Shannon entropy satisfies
the following properties:

1. It is continuous on the probabilities p.
2. If the equivalence classes are equiprobable, that is, ∀p, p = 1

N with
N being the number of equivalence classes, then the entropy H(R) is
a monotonic increasing function of N.

3. If a probabilistic choice is further broken down into two succes-
sive choices, the overall entropy should be a weighted sum of the
subchoice entropies. In Figure 2d (top), H(a , bc, bd) = H(a , b) +
b H(c, d), where a , b, c denote probabilities.

The metrical entropy H∗ satisfies the first two requirements. Does it also
satisfy the third property of additivity? Consider Figure 2d (bottom). The
joint metrical entropy is

H∗(a , bc, bd) = −a log(a ) − bc log(bc + bdy) − bd log(bd + bcy).

(3.8)

Since

H∗(a , b) =−a log(a ) − b log(b) (3.9)

H∗(c, d) =−c log(c + dy) − d log(d + cy), (3.10)

then,

b H∗(c, d) + H∗(a , b) = −a log(a ) − b log(b) − bc log(c + dy)

−bd log(d + cy) (3.11)

= −a log(a ) − bc log(bc + bdy)

−bd log(bd + bcy) (3.12)

= H∗(a , bc, bd). (3.13)

The metrical entropy thus satisfies the three previous fundamental requi-
rements.

3.3 Metrical Entropy Based on a Local Similarity Function. A critical
property of the metrical information I ∗(R; S) is the global nature of the simi-
larity measure φ(r, r ′)—the fact that the critical distance does not depend on
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the position in the event space. In Figure 2e, I ∗(R; S) cannot be maximized
while keeping H∗(R|S) = 0 because the size of one of the clusters is larger
than the distance between two others. This is an undesired outcome of the
analysis because all the responses within a cluster are closer to each other
than the closest responses from other clusters.

Otherwise stated, the global version of the metrical information assumes
a similarity measure that does not depend on the region of the event space.
In order to circumvent this limitation, we also consider a locally specific
discrimination selectivity function. We then derive a local version of the
metrical entropy by taking a similarity measure that varies over the event
space. Thus, we take a similarity measure at response r with respect to
other’s responses r ′ as φr (r ′) = H(Dcritic(r ) − d(r, r ′)), with a critical distance
that now depends on r . A collateral of this locality is that φr (r ′) is not nec-
essarily equal to φr ′ (r ) anymore. Note that we still constrain the similarity
measure to be isotropic.

In the context of the optimality condition (see section 3.2.2), the critical
distance for φr (r ′) becomes the size of the cluster of responses (to a given
stimulus) that r belongs to. As a consequence, instead of the two parameters
CV P and Dcritic, the local version of metrical information measure will de-
pend on CV P and a family of critical distances D = {Dcritic} (see Figure 2e).
When a local similarity measure is considered, the optimal discrimination
condition, that is, maximum I ∗(R; S) and zero H∗(R|S), will occur when the
size of each cluster in the event space becomes smaller than the distance
with its closest clusters.

4 Results: Temporal Decoding of Human Microneurography
Haptic Signals

In order to validate the metrical information analysis we have presented,
we studied the temporal decoding of the responses of fingertip mechanore-
ceptors to tactile stimuli. Mechanoreceptors innervate the epidermis and
discharge as a function of the mechanical indentations and deformations
of the skin. Recent microneurography studies in humans (Johansson &
Birznieks, 2004) have suggested that the relative spike timing of mechano-
receptor responses can convey information about contact parameters faster
than the fastest possible rate code, and fast enough to account for the use
of tactile signals in natural manipulation (Johansson & Flanagan, 2009).

To investigate fast encoding and decoding of tactile signals, we con-
centrated on the responses of fast-adapting (FA-I) mechanoreceptors only
(Johansson & Birznieks, 2004). The overall input state space consisted of the
responses of 42 FA-I mechanoreceptors to 81 distinct stimuli obtained by
varying four primary contact parameters:

� Curvature of the probe (C = {0, 100, 200} m−1, |C | = 3)
� Magnitude of the applied force (F = {1, 2, 4} N, |F | = 3)
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� Direction of the force (O = {ulnar, radial, distal, Proximal, Normal},
|O| = 5)

� Angle of the force relative to the normal direction (A = {5, 10, 20}◦,
|A| = 3)

4.1 Metrical Information Analysis on a Limited Region of the Input-
Output Space. First, we considered only the five force directions (ulnar,
radial, distal, proximal, normal) as variable primary features (similar to
Johansson & Birznieks, 2004, and Saal et al., 2009). We computed the VP
distances DV P across the population of 42 mechanoreceptor afferents, with
each of the |S| = 5 stimuli presented 100 times.

According to the hypothesis that the variability in the first-spike latency
domain with respect to stimulus feature is larger than the variability within
repetitions of the same stimulus (Johansson & Birznieks, 2004), we focused
on the first spike of each FA-I mechanoreceptor only. Thus, each tactile
stimulus consisted of a single volley of spikes forming a spatiotemporal
response pattern defined by the first-spike latencies across the afferent pop-
ulation (see Figure 3a for three sample recordings).

Figure 3b shows how the intra- and interstimulus distance distributions
evolved over time. Within 25 ms of the the first mechanoreceptor discharge
(and within 55 ms of stimulus onset), the critical cutoff Dcritic = 6.2 of
the Heaviside function could be set, which ensured that the perfect dis-
crimination condition (maximum I ∗(R; S) and zero H∗(R|S)) was met. The
black curves of Figure 3c confirm this result, showing that I ∗(R; S) (solid
black curve), computed based on the global cutoff Dcritic = 6.2, saturated at
log2(5) within 25 ms of the first spike arrival, while the condition entropy
H∗(R|S) (dashed black line) remained nil. The dark gray curves of Figure 3c
show the time course of the local metrical information. Convergence to the
perfect discrimination condition did not occur earlier than in the case of
the global I ∗(R; S) (black curve). The reason is that the clusters happened
to have similar sizes; therefore, all the local critical distances D = {Dcritic} =
{5.3, 4.8, 4.8, 4.7, 6.2} happened to be close to the global critical distance
(Dcritic = 6.2). The light gray curves of Figure 3c demonstrate that Shan-
non mutual information (light gray solid line), computed by considering a
temporal binning of 1 ms resolution, increased faster than the metrical infor-
mation. However, the conditional entropy (light gray dashed line) diverged.

Figure 3d displays two samples of distance matrices indicating how the
decoding system clustered the input spike waves across the 42 mechanore-
ceptor afferents over time. Before the occurrence of the perfect discrimina-
tion condition (at 40 ms, left matrix) different stimuli could have relatively
small distances, that is some interferences could impair the decoding pro-
cess. After 60 ms (right matrix), all the initially overlapping contexts were
separated, which removed all interferences across inputs and led to 100%
accuracy in the discrimination process.
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Figure 3: Results: Information theoretical analysis on a limited stimulus set.
The first spike latency patterns of |S| = 5 distinct stimuli, each of which pre-
sented 100 times, were considered for this analysis. (a) Three examples of human
microneurography FA-I recordings showing the first spike waves across 42 af-
ferents evoked by 3 distinct tactile stimuli (while varying only the orientation
parameter). (b) Evolution of the intra- and interstimulus distances as spikes
flowed in. The perfect discrimination condition was met about 55 ms after the
stimulus onset, when the critical cutoff Dcritic could be determined. (c) Shan-
non MI (light gray curves), global metrical information (black curve), and local
metrical information (dark gray curves) over time. (d) Distance matrices before
(left) and after (right) the occurrence of perfect discrimination. Only 10 presen-
tations per stimulus were considered to generate these matrices. Whereas at 40
ms some interferences existed in the input-output mapping, all the events were
well separated at 60 ms.
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4.2 Metrical Information Analysis on an Extended Region of the
Input-Output Space

4.2.1 First Spike Wave Analysis. We then scaled up the analysis to the en-
tire set of microneurography recordings (i.e., 81 distinct stimuli encoded by
42 mechanoreceptor spike trains). Figure 4a compares Shannon mutual in-
formation against both the global and local versions of metrical information.
In this case, only first spike latencies were considered by the analysis. Again,
Shannon MI (the light gray solid line) reached its maximum faster than the
metrical information, but the drawback is the large conditional entropy (the
light gray dashed line). Global metrical information (the black line) shows
that perfect discrimination (I ∗(R; S) = H∗(R)) was reached within about
40 ms of the first afferent spike. The local version of metrical information
(the dark gray line) converged faster than the global measure. This can be
explained by the distribution of the local critical distances (i.e., the sizes of
the event clusters) shown in Figure 4b. The global version of the I ∗ used a
critical distance Dcritic = 6.8, which was much too large for some stimuli. By
contrast, the local version used the entire distribution of critical distances
(D = {1.7, . . . , 6.8}) and it was then better adapted to the configuration of
the input-output relationship.

It is worth noting that the time needed to achieve perfect discrimination
was longer compared to the five stimulus case (40 versus 25 ms) not only
because of the larger input set but also because some stimuli were rather
difficult to separate in the DV P distance space (e.g., two skin indentations
with the same curvature, force, direction parameters, and with only a 5 de-
gree difference on the angle). Figure 4c illustrates two examples of distance
matrices largely and shortly before convergence (left and right matrices,
respectively).

4.2.2 Full Spike Train Analysis. In a subsequent analysis, we took into
account the complete spike train responses of the 42 recorded mechanore-
ceptors rather than the first spike waves only. Figure 5a shows an example of
population spike latency pattern across 42 mechanoreceptors. When com-
paring again Shannon MI vsrsus global and local metrical information (see
Figure 5b), we found that the time course of Shannon MI (the light gray
line) did not change significantly compared to the first spike latency case.

Interestingly, the global metrical information measure (the black line)
was impaired when taking into account the entire spike train. A plausi-
ble reason may be that the DV P distance scaled up with the number of
spikes: a stimulus with a large force amplitude (4 N) elicited many spikes
per mechanoreceptor, making the size of the cluster corresponding to this
stimulus large. Meanwhile, the distances between clusters corresponding
to stimuli with low forces (1 N) remained small. As suggested by Figure 5b,
it was more efficient to use the local version of I ∗ (the dark gray line), which
behaved similar to the first spike wave case.
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Figure 4: Results: Information-theoretical analysis on the entire stimulus set.
The first spike latency patterns of |S| = 81 distinct stimuli, each presented 100
times, were considered by this analysis. (a) Shannon MI (light gray lines), global
(black line), and local (dark gray line) metrical information measures as spikes
flowed in. (b) Distribution of critical distances D. (c) Distance matrices at 40 ms
(left) and 65 ms (right), slightly before the occurrence of the perfect discrimina-
tion condition (∼80 ms) (for clarity, these matrices were obtained on the basis
of 10 presentations per stimulus). Bottom: Sequence of stimulus presentations
according to the combinations of all contact parameters: curvature of the probe
(0 m−1 , 100 m−1 , and 200 m−1); angle of the force relative to the normal direction
(0◦, 5◦, 10◦, 20◦); magnitude of the force (1 N, 2 N, 4 N); direction of the force
(normal, radial, distal, ulnar, proximal).
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Figure 5: Results: Information-theoretical analysis on the complete stimulus
set. The spike latencies of all spike trains, i.e. |S| = 81 distinct stimuli each
presented 100 times, were considered by this analysis. (a) An example of hu-
man microneurography FA-I recordings showing the entire spike trains of 42
afferents. (b) Evolution of Shannon MI (light gray lines), global (black line), and
local (dark gray lines) metrical information measures over time.

4.2.3 Detecting Regularities and Isometric Mapping. Since the time neces-
sary to reach the optimal discrimination was similar when dealing with
either first spike waves or whole spike trains, we investigated the possi-
ble contributions to information transmission of the second and following
spike waves. The results shown in Figure 6 highlight a meaningful property
of the entire spike trains.

We employed the Victor-Purpura distance by taking CV P = 0 and
measured the distances between the mechanoreceptor responses to stimuli
with force amplitudes 1 and 2 N (i.e., DV P (1N, 2N)), and then to stimuli
with force 2 and 4 N (i.e., DV P (2N, 4N)), and finally to stimuli with force
1 and 4 N (DV P (1N, 4N)). The following relation was then verified for any
set of the other free contact parameters: DV P (1N, 2N) + DV P (2N, 4N) =
DV P (1N, 4N). This result held when only the first spike waves were
considered (see Figure 6a) and the entire spike trains were analyzed
(see Figure 6b). This means that the one-dimensional stimulus space was
mapped onto a noncurved one-dimensional response space. This alignment
property can be suitable for dissociating the problem of decoding the force
of the stimulus from that of determining other features of the stimulus (i.e.,
pruning of the search state space).

Furthermore, Figure 6b shows that when entire spike trains are con-
sidered the distances between the outputs tended to reflect the distances
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Figure 6: Results: Time course of the DV P distances. Distances between the
mechanoreceptor responses to stimuli with force amplitudes 1 and 2 N
(DV P (1N, 2N)), then to stimuli with force 2 and 4 N (DV P (2N, 4N)), and fi-
nally to stimuli with force 1 and 4 N (DV P (1N, 4N)). For each combination,
all the other contact parameters were varied. (a) Results obtained when only
the first spike of each mechanoreceptor was considered. (b) Results when
the complete spike train was taken into account. In both cases, the equality
DV P (1N, 2N) + DV P (2N, 4N) = DV P (1N, 4N) held through time. Furthermore,
we observed an isometric input-output mapping when considering entire spike
trains.
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between the stimuli. Indeed, DV P (2N, 4N) was approximately two times
DV P (1N, 2N), which suggests an isometry-like property of the decoding
measure. This result can be interpreted as follows: temporal decoding based
on first spike latencies allowed complete stimulus discrimination to be
achieved very rapidly. Yet taking into account the spike timing of all the
responses added to perfect discrimination the possibility of capturing some
regularities of the input space (e.g., isometric mapping). Not only were the
responses organized so that a quick discrimination was possible, but they
were logically organized so that the mapping from the stimulus space to
the response space was a simple transformation. This may be the basis for
the ability to extrapolate or generalize the reconstruction of the stimulus
when never-before-experienced stimuli are presented.

5 Discussion

This metrical information analysis proposes a complementary approach,
compared to Shannon information theory, to study stochastic communica-
tion systems. Shannon mutual information estimates an upper bound on
the quality of the coding, no matter the decoding system and the condi-
tional entropy. As a consequence, Shannon information theory provides a
benchmark to assess the fraction of the overall information actually cap-
tured by decoding algorithms (Borst & Theunissen, 1999; Quian Quiroga
& Panzeri, 2009). Metrical information analysis incorporates the notion
of decoding system (through the distance-based similarity function) and
the importance of conditional entropy for the optimization of information
transmission. This complementarity relation leads to a shift from an ap-
proach that tells how much information is there but not how to read it, to
a constructive-like approach that considers the parameters of the decoding
system that reads out the neural code.

This work attempts to contribute to existing methods, such as Fisher
information analysis (Blahut, 1988; Clarke & Barron, 1990; Rissanen, 1996;
Brunel & Nadal, 1998) and rate distortion theory (Bialek et al., 1991;
Gabbiani & Koch, 1996; Dimitrov et al., 2001, 2003), that bridge the gap
between pure decoding approaches (e.g., Bayesian algorithms, k-nearest
neighbor decoders, population vector decoding; Rieke et al., 1997; Borst
& Theunissen, 1999; Pouget et al., 2000; Dayan & Abbott, 2001) and pure
information-theoretical analyses (e.g., London et al., 2002; Sharpee et al.,
2006; Butts & Goldman, 2006). It also relates to recent works by Thomson
and Kristan (2005), Victor and Nirenberg (2008), and Quian Quiroga and
Panzeri (2009) that have studied the complementary properties of decod-
ing and information theoretical algorithms to decipher the neural code. Our
work is related to the approach by Treves (1997) that estimates the structure
of the perceptual space by comparing results from information theory and
maximum-likelihood estimations. Theoretical constraints may be derived
between Shannon mutual information and the fraction of correct decodings.
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For a given fraction of correct decodings, it is possible to infer lower and
upper bounds to the MI depending on the structure of the perceptual space.
When analyzing experimental data, knowing whether the results are close
to the lower or upper bound allows the dimension and structure of the
response space to be determined (Do they lie on a line or at the vertices of
an n-simplex?).

Both rate distortion theory (RDT) (Cover & Thomas, 1991) and met-
rical information analysis look for a compression of the responses such
that the information about the stimuli is preserved. The compression is to
be realized by a neural decoder, that is, a layer of downstream neurons.
The properties of the neural decoder impose some constraints on the pos-
sible compressions. RDT methods aim at identifying the features of the
code that are most relevant to information transmission while discard-
ing the irrelevant ones so as to compress the code. Metrical information
analysis tries to find the optimal way in which neurons can look at the
code (so as to minimize the noise entropy and maximize the information)
given the constraints. These constraints are captured by the estimation
of distances between spike trains. Indeed, the similarity measure is sub-
ordinated to distance estimation. It is then possible to infer the optimal
parameters of the neurons (e.g., the membrane time constant) to trans-
fer information while compressing the signal. In this framework, setting
the critical distance so as to minimize the conditional entropy amounts
to stressing the importance of the compression of the code besides the
importance of input discriminability. The relaxation of this optimality con-
straint may lead to biologically plausible trade-offs between compression
and information transfer (currently under examination; see the example in
Figure 7).

From a machine learning perspective, the proposed method relates to
statistical linear discrimination (e.g., for dimensionality reduction and clas-
sification) such as Fisher discriminant analysis (Fisher, 1936; Friedman,
1989; Mika, Rätsch, Weston, Schölkopf, & Müller, 1999; McLachlan, 2004).
Indeed, there exists a qualitative link to the index of discriminability d ′,
which quantifies the separability of two populations of events that are sup-
posed to have identical gaussian conditional probability distributions. The
d ′ measure is defined as the distance between the means of the two distribu-
tions, normalized by their standard deviation. The linear combination of pa-
rameters that maximizes the ratio d ′ leads to optimal discrimination (Fisher,
1936). For instance, d ′ can be used to assess the stimulus discriminability
based on the spike count of neural responses for both single-cell and popu-
lation coding (Petersen, Panzeri, & Diamond, 2002). As for the computation
of d ′, estimating the metrical information I ∗(R; S) requires a comparison
of the distances between the clusters of events with the distances within
a cluster. Notice that instead of providing a continuous measure of dis-
criminability without any upper bound (the ideal case would be reached
when the two distributions are infinitely far apart), the measure presented
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Figure 7: Results. The optimal discrimination constraint can be relaxed by
reducing the critical distance, therefore giving relatively more importance to
transmission than compression. The metrical information and noise entropy
are plotted for three values of the critical distance (optimal Dc = 6.2, thick
black curves; Dc = 4, thin black curves; and Dc = 2, dark gray curves), showing
the trade-off between transmission and compression. In our analysis, Shannon
information (light gray curves) constitutes a limit case of this trade-off, favoring
transmission over compression.

here is bounded: two distributions are considered as fully separated as
long as their size is smaller than their distance. Once this condition is met,
no matter how far they are, their discriminability is estimated to be the
same.

From a more general perspective, a link can be drawn between the
proposed metrical information analysis and signal detection theory (SDT)
(Dayan & Abbott, 2001). SDT offers a set of statistical tools to assess the
capacity of neural systems to encode and transmit information (Tolhurst,
Movshon, & Dean, 1983; Britten, Shadlen, Newsome, & Movshon, 1992;
Guido, Lu, Vaughan, Godwin, & Sherman, 1995; Cheng & Wasserman,
1996; Petersen et al., 2002). In contrast to classical information theoretical
principles, SDT makes an extensive use (either implicit or explicit) of met-
rics. As suggested in Figure 8, the metrical conditional entropy H∗(R|S)
can be related to the SDT “false-positive rate” concept, in the sense that
when H∗(R|S) = 0, two identical stimuli are always correctly identified (0
false alarms). Likewise, I ∗(R; S) is akin to the “true positive rate” in the
sense that when it is maximum, the hit rate is maximum (i.e., two different
inputs are always correctly discriminated). Under the optimal discrimina-
tion condition (maximum I ∗(R; S) and nil H∗(R|S)), the receiver-operating
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Figure 8: Signal detection theory (SDT) offers a set of statistical tools to evaluate
the discrimination efficacy of decision-making processes (e.g., diagnostic tests).
One of these tools is the receiver-operating characteristic (ROC) (Barlow &
Levick, 1969; Cohn, Green, & Tanner, 1975; Geisler, Albrecht, Salvi, & Saunders,
1991), which can be used to determine the appropriate selectivity (or cutoff)
threshold of a classification procedure. (a) Let R1 and R2 denote two populations
of events characterized by overlapping gaussian distributions. The exploration
of all possible cutoff values to discriminate R1 from R2 events can be quantified
using an ROC analysis, which plots the true positive (“hit”) rate (e.g., the fraction
of correct classification of R2 events) against the false-positive (“false alarm”)
rate (e.g., the fraction of R1 events incorrectly classified as R2 events) while
varying the selectivity threshold. As a consequence, ROC curves permit trading
all the relative importance of true positive and false-positive rates to enhance the
accuracy of a discrimination test. Different points on the curve denote different
choices of the discriminatory threshold. The diagonal line corresponds to a
random guess (less accurate classification). The closer the curve is to the top-
left quadrant, the more accurate the discrimination. TP: true positive; FP: false
positive; TN: true negative; FN: false negative. (b) The metrical information with
respect to the conditional metrical entropy as a function of the critical distance
for two gaussians of variance 5 separated by d . The behavior highly resembles
that of a classical ROC, as the metrical information (resp. conditional metrical
entropy) roughly gives the true positive rate (resp. false-positive rate) of a
discrimination task performed by an observer acting according to the similarity
measure used.
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characteristic (ROC) curve (Barlow & Levick, 1969; Cohn, Green, & Tanner,
1975; Geisler, Albrecht, Salvi, & Saunders, 1991) as a function of the critical
distance follows the 0-miss and 0-false alarm axes. Therefore, the integral of
the ROC curve is 1, and so it is the probability of discriminating correctly in
a two-alternative forced-choice test (which holds here for any two stimuli)
(Dayan & Abbott, 2001). Notice that in metrical information analysis, the
emphasis is shifted from the values to the distances between the values. In
SDT, the threshold is a certain value of the output parameter, whereas in
metrical information analysis, the threshold is a certain distance between
two outputs.

6 Conclusion

This letter highlights the importance of endowing an information-
theoretical analysis with the capability of taking into full account the
metrical relations (e.g., distances) between spike trains in order to quan-
tify neurotransmission reliability. In contrast to Shannon mutual infor-
mation, the proposed measure does not require any a priori partioning
of the event space into equivalence classes (e.g., temporal binning pro-
cedures or clustering of neural responses based on confusion matrices).
Rather, the employed metrics (similarity measure) shapes the discretiza-
tion of the state space over time. We show how the definition of met-
rical entropy incorporates the distances between events (computed, for
instance, based on a Victor-Purpura spike train metrics; Victor & Purpura,
1996). The resultant information quantity, in contrast to Shannon infor-
mation, is both a parametric and diffeomorphism-variant estimate of the
statistical dependence between two variables (e.g., stimulus and neural
response).

We put forth the hypothesis that the selectivity level represented by the
similarity measure may be tuned to reflect some known properties of the
readout system (e.g., actual temporal precision of a neural decoder). By
contrast, Shannon information can be understood in terms of a Kronecker-
like similarity measure—the selectivity capacity of an ideal observer. As a
consequence, in certain situations, Shannon information measurements of
the capacity of a neural code might happen to be not biologically relevant
due to nonexistent neural decoders able to exploit the whole amount of
estimated information (Quian Quiroga & Panzeri, 2009). Since the similar-
ity measure is a projection of the properties of the reader onto the input
space, metrical information analysis can help to solve this problem. Indeed,
the metrical information I ∗(R; S) and conditional entropy H∗(R|S) can be
seen as quantitative answers to the question: Is it possible for a readout
system that implements a decoding scheme based on the similarity mea-
sure φ(r, r ′) to perform perfect decoding, that is, maximize I ∗(R; S) and
minimize H∗(R|S)?
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London, M., Schreibman, A., äusser, M. H, Larkum, M. , & Segev, I. (2002). The
information efficacy of a synapse. Nat. Neurosci., 5(4), 332–340.

Lu, T., & Wang, X. (2004). Information content of auditory cortical responses to
time-varying acoustic stimuli. J. Neurophysiol., 91, 310–313.

MacKay, D., & McCulloch, W. (1952). The limiting information capacity of a neuronal
link. Bull. Math Biol., 14(2), 127–135.

Manwani, A., & Koch, C. (2001). Detecting and estimating signals over noisy
and unreliable synapses: Information-theoretic analysis. Neural Comput., 13, 1–
33.

Manwani, A., Steinmetz, P. N., & Koch, C. (2002). The impact of spike timing variabil-
ity on the signal-encoding performance of neural spiking models. Neural Comput.,
14, 347–367.

McLachlan, G. J. (2004). Discriminant analysis and statistical pattern recognition. New
York: Wiley Interscience.

Mika, S., Rätsch, G., Weston, J., Schölkopf, B., & Müller, K.-R. (1999). Fisher discrim-
inant analysis with kernels. In Y.-H. Hu, J. Larsen, E. Wilson, & S. Douglas (Eds.),
Neural networks for signal processing IX (pp. 41–48). Piscataway, NJ: IEEE.

Nadal, J. P., Brunel, N., & Parga, N. (1998). Nonlinear feedforward networks with
stochastic outputs: Infomax implies redundancy reduction. Network, 9, 207–
217.

Nadal, J. P., & Toulouse, G. (1998). Information storage in sparsely coded memory
nets. Network, 1, 61–74.

Olshausen, B. A., & Field, D. J. (1996). Emergence of simple-cell receptive field
properties by learning a sparse code for natural images. Nature, 381, 607–609.

Panzeri, S., Petersen, R., Schultz, S., Lebedev, M., & Diamond, M. (2001). The role
of spike timing in the coding of stimulus location in rat somatosensory cortex.
Neuron, 29, 769–777.

Panzeri, S., Senatore, R., Montemurro, M. A., & Petersen, R. S. (2007). Correcting for
the sampling bias problem in spike train information measures. J. Neurophysiol.,
98, 1064–1072.

Paz, R., & Vaadia, E. (2004). Learning-induced improvement in encoding and de-
coding of specific movement directions by neurons in the primary motor cortex.
PLoS Biol 2, E45.

Petersen, R., Panzeri, S., & Diamond, M. (2002). Population coding in somatosensory
cortex. Curr. Opin. Neurobiol., 12, 441–447.

Pouget, A., Dayan, P., & Zemel, R. (2000). Information processing with population
codes. Nat. Rev. Neurosci., 1, 125–132.

Quian Quiroga, R., Kreuz, T., & Grassberger, P. (2002). Event synchronization: A
simple and fast method to measure synchronicity and time delay patterns. Phys.
Rev. E, 66, 041904.



880 R. Brasselet, R. Johansson, and A. Arleo

Quian Quiroga, R., & Panzeri, S. (2009). Extracting information from neuronal pop-
ulations: Information theory and decoding approaches. Nat. Rev. Neurosci., 10,
173–185.

Rainer, G., Lee, H., & Logothetis, N. K. (2004). The effect of learning on the function
of monkey extrastriate visual cortex. PLoS Biol, 2, E44.

Reich, D. S., Mechler, F. , & Victor, J. D. (2001). Independent and redundant informa-
tion in nearby cortical neurons. Science, 294, 2566–2568.

Richmond, B. J., & Optican, L. M. (1990). Temporal encoding of two-dimensional
patterns by single units in primate primary visual cortex. II. Information trans-
mission. J. Neurophysiol., 64, 370–380.

Rieke, F., Warland, D., de Ruyter van Steveninck, R. , & Bialek, W. (1997). Spikes:
Exploring the neural code. Cambridge, MA: MIT Press.

Rissanen, J. (1996). Fisher information and stochastic complexity. IEEE Trans. Inf.
Theory, 42, 40–47.

Saal, H., Vijayakumar, S., & Johansson, R. (2009). Information about complex finger-
tip parameters in individual human tactile afferent neurons. J. Neurosci., 29(25),
8022–8031.

Schneidman, E., Slonim, N., Tishby, N., de Ruyter van Steveninck, R. R., & Bialek, W.
(2002). Analyzing neural codes using the information bottleneck method. (Tech.
Rep.) Jerusalem: Hebrew University.

Schreiber, S., Fellous, J. M., Whitmer, S., Tiesinga, P., & Sejnowski, T. (2003). A new
correlation-based measure of spike timing reliability. Neurocomputing, 52–54, 925–
931.

Shannon, C. (1948). A mathematical theory of communication. Bell Syst. Tech. J., 27,
379–423.

Sharpee, T. O., Sugihara, H., Kurgansky, A. V., Rebrik, S. P., Stryker, M. P., & Miller,
K. D. (2006). Adaptive filtering enhances information transmission in visual cor-
tex. Nature, 439, 936–942.

Smith, E., & Lewicki, M. (2006). Efficient auditory coding. Nature, 439, 978–982.
Strong, S. P., Koberle, R., de Ruyter van Steveninck, R. R., & Bialek, W. (1997). Entropy

and information in neural spike trains. Phys. Rev. Lett., 80(1), 197–200.
Theunissen, F., & Miller, I. (1991). Representation of sensory information in the cricket

cercal sensory system. II. Information theoretic calculation of system accuracy and
optimal tuning-curve widths of four primary interneurons. J. Neurophysiol., 66,
1690–1703.

Thomson, E. E., & Kristan, W. B. (2005). Quantifying stimulus discriminability: A
comparison of information theory and ideal observer analysis. Neural Comput.,
17, 741–778.

Tiesinga, P. H. (2001). Information transmission and recovery in neural communica-
tion channels revisited. Phys. Rev. E Stat. Nonlin. Soft Matter Phys., 64, 012901.
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