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Abstract Homozygous tottering mice are spontaneous
ataxic mutants, which carry a mutation in the gene
encoding the ion pore of the P/Q-type voltage-gated
calcium channels. P/Q-type calcium channels are promi-
nently expressed in Purkinje cell terminals, but it is
unknown to what extent these inhibitory terminals in
tottering mice are affected at the morphological and
electrophysiological level. Here, we investigated the distri-
bution and ultrastructure of their Purkinje cell terminals in
the cerebellar nuclei as well as the activities of their target
neurons. The densities of Purkinje cell terminals and their
synapses were not significantly affected in the mutants.
However, the Purkinje cell terminals were enlarged and had
an increased number of vacuoles, whorled bodies, and
mitochondria. These differences started to occur between 3
and 5 weeks of age and persisted throughout adulthood.
Stimulation of Purkinje cells in adult tottering mice resulted
in inhibition at normal latencies, but the activities of their
postsynaptic neurons in the cerebellar nuclei were abnormal
in that the frequency and irregularity of their spiking
patterns were enhanced. Thus, although the number of their
terminals and their synaptic contacts appear quantitatively
intact, Purkinje cells in tottering mice show several signs of
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axonal damage that may contribute to altered postsynaptic
activities in the cerebellar nuclei.
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Introduction

The spontaneous mouse mutant tottering (#g) suffers from
recessive neurological disorders including both permanent
ataxia as well as episodes of dystonia, paroxysmal
dyskinesia, and behavioral absence seizures. The absence
seizures in fg mice resemble human petit mal seizures in
that they are marked by abnormal electroencephalography
(EEG) patterns [1] and that they respond to common
antiepileptic drugs [2], whereas the attacks of paroxysmal
dyskinesia cannot be correlated reliably to a clear EEG
pattern and do not respond to antiepileptic therapeutics [3,
4]. The episodes of paroxysmal dyskinesia can be reliably
triggered by environmental challenges [4-6] and are
distinguished from the permanent ataxia by the sequence
of three stages of behavioral abnormalities, which start at
the hind limbs, then gradually spread to the front limbs, and
eventually also reach the head and neck. These motor
attacks, which typically occur approximately one to two
times per day and can last up to 40 min, include irregular
jerky movements, slow writhing motions, and involuntary
stretching of the muscles [1, 3, 7]. In between these
episodes, fg mice are mildly ataxic in that they show an
abnormal gait and decreased motor performance and
learning [8-10].

The genotype of tg mice is characterized by an
autosomal recessive mutation in the gene located on
chromosome 8 that encodes the «;s-subunit of P/Q-type
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Ca*'-channels in nerve, muscle, and secretory cells [11,
12]. Since P/Q-type calcium channels are abundantly
present in cerebellar Purkinje cells and gate ~90% of their
high-voltage-activated Ca®"-influx [13, 14], it is parsimo-
nious to explain the juvenile onset of ataxia in fg mutants
by deficits in their Purkinje cells. Indeed, the calcium influx
in tg Purkinje cells is decreased by ~45% [15], their
responses to parallel fiber stimulation are reduced by ~50%
[16], and their simple spike firing patterns show enhanced
irregularities with periods of pauses and bursts [9].
Moreover, Purkinje cells in g show morphological aberra-
tions in that their dendritic spines make relatively fre-
quently multiple contacts with individual parallel fiber
varicosities [17] and that their somata have elongated nuclei
and are reduced in size [18, 19]. Interestingly, many of the
morphological and physiological changes in the Purkinje
cell dendrites and somata precede or coincide with the
occurrence of the ataxia at the end of the first month of age
suggesting that these changes form a major cause of the
behavioral deficits [9, 17]. However, it remains possible
that changes at the level of the terminals of the Purkinje
cells also contribute to the ataxia in g mutants, because the
density of P/Q-type Ca®"-channels is particularly high in
terminals [20, 21] and because chronically altered firing in
Purkinje cells can lead to pathological alterations in their
terminals [22]. We therefore investigated the Purkinje cell
terminals of #g mutants at both the morphological and
electrophysiological level. To correlate possible morpho-
logical aberrations to the behavioural changes, we investi-
gated the distribution and ultrastructure of Purkinje cell
terminals in the cerebellar nuclei before (2—-3-week-old
animals) and after (5-week and 6-month-old animals) the
onset of the ataxia. In addition, we investigated whether the
contacts of the Purkinje cell terminals with their postsyn-
aptic neurons in the cerebellar nuclei in the adult mice were
functionally intact by recording the extracellular activities
of the cerebellar nuclei neurons following stimulation of the
Purkinje cells.

Materials and Methods
Animals

Data were collected from 18 7g mice and 17 wild-type
littermates (both male and female mice were included;
C57BL/6] background; originally ordered from Jackson
laboratory, Bar Harbor, ME, USA). The presence of the #g
mutation in the Cacnala gene on chromosome 8 was
confirmed by PCR using 3'-TTCTGGGTACCAGA
TACAGG-5' and 5'-AAGTGTCGAAGTTGGTGCGC-3'
primers (Eurogentech, The Netherlands) and subsequent
digestion using restriction enzyme NSBI at the age of p9—
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pl12. No oligosyndactyly was used. All preparations and
experiments were done according to the European Com-
munities Council Directive (86/609/EEC) and were
reviewed and approved by the national ethics committee.
For light microscopy, we restricted ourselves to animals of
6 months (fg, N=3; wild type, N=3), while for electron
microscopy, we examined animals at the age of 2-3 weeks
(i.e., for both 14 and 20 days zg, N=2 and wild type, N=2),
5 weeks (tg, N=3; wild type, N=2), and 6 months (g, N=3;
wild type, N=3). The electrophysiological recordings were
conducted in mice at the age of 6 months (zg, N=5; wild
type, N=5).

Light Microscopy

In this study, the Purkinje cell terminals were identified by
immunocytochemical labeling using anticalbindin labeling
[23, 24]. To do so, three adult wild-type and three g
littermates were anesthetized with an overdose of Nembutal
(i.p.) and transcardially perfused with 0.12 M phosphate
buffered saline (pH=7.4) followed by 4% paraformalde-
hyde in phosphate buffer (PB) at room temperature. The
cerebellum and brainstems were carefully removed, post-
fixed in 4% paraformaldehyde for 2 h, placed in 10%
sucrose in PB at 4°C overnight, and subsequently embed-
ded in gelatin in 30% sucrose. The blocks were cut on a
cryotome into coronal sections of 40 um. Sections were
washed in blocking solution containing 10% normal
horse serum (NHS) with 0.5% triton for 1 h and
incubated in rabbit anticalbindin (1:7,000, Swant) with
2% normal horse serum and 0.5% Triton for 48 h [25].
Subsequently, the sections were incubated for 2 h in
biotinylated goat—antirabbit IgG at room temperature (1 to
500; Vector) followed by 2 h in avidin-biotinylated
horseradish peroxidase complex (ABC-HRP; Vector).
Sections were rinsed in PB and stained with 0.5% 3,3-
diaminobenzidine tetrahydrochloride and 0.01% H,O, for
15 min at room temperature. Sections of g mutants and
wild-type littermates were processed simultaneously to
avoid artificial differences due to the staining procedures.
For quantification of terminals in the lateral cerebellar
nuclei and interposed nuclei, we framed 500x500 pum
with a ten times objective and used Neurolucida systems
software (MicroBrightField, Colchester, VT, USA) for
analyses, which were done blind to the genotype. The
terminal numbers were averaged per animal and nucleus.

Electron Microscopy

Wild-type (N=9) and tg mice (N=10) were anesthetized
with an overdose of Nembutal (i.p.) and transcardially
perfused with 4% paraformaldehyde and 0.5% glutaralde-
hyde in cacodylate buffer. Brains were removed, kept
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overnight in 4% paraformaldehyde, and cut into 80 pum
thick coronal sections on a vibratome. The vibratome
sections were subsequently washed and blocked for 1 h in
10% NHS followed by 48 h of incubation in rabbit
anticalbindin 4°C (1:7,000, Swant) and 2% NHS. Sub-
sequently, the sections were incubated overnight 4°C in
biotinylated goat—antirabbit IgG (1 to 500; Vector) and
ABC-HRP (Vector). At the end of the immunostaining, the
sections were stained with 0.5% 3,3-diaminobenzidine
tetrahydrochloride and 0.01% H,O, for 15 min at room
temperature. Ultimately, the sections were osmicated with
2% osmium in 8% glucose solution, dehydrated in
dimethoxypropane, and stained en block with 3% uranyl
acetate/70% ethanol for 60 min and embedded in Araldite
(Durcupan, Fluka, Germany). Guided by findings in semi-
thin sections, we made pyramids of the medial cerebellar
nucleus, lateral cerebellar nucleus, interposed cerebellar
nucleus, and superior vestibular nucleus. Ultrathin sections
(70-90 nm) were cut using an Ultramicrotome (Leica,
Germany), mounted on copper grids, and counterstained
with uranyl acetate and lead citrate. Purkinje cell terminals
were photographed and analyzed using an electron micro-
scope (Philips, Eindhoven, The Netherlands). Electron
micrographs were taken at magnifications ranging from
x1,500 to x30,000 from single hole EM grids and analyzed
with the use of commercially available software (SIS) to
study diameters and surface areas of labeled terminals and
their surrounding structures in the neuropil. The surface
area measurements were deduced automatically by drawing
the circumference of all profiles (IBAS systems). Terminals
of the lateral cerebellar nucleus and interposed cerebellar
nucleus were each quantified per 25,000 um? in each
animal by a researcher who was blind to the genotype of
the mice. Since no significant differences were observed
among the two cerebellar nuclei, the data were pooled.
Statistics were done with the use of unpaired Student’s ¢
tests assuming equal variances. p values equal or smaller
than 0.05 were considered significant.

Electrophysiology

Five fg mutants and five wild-type littermates of ~6—
8 months were anesthetized with ketamine (50 mg/kg body
weight) and xylazine (8 mg/kg body weight) and subjected
to extracellular single unit recordings of neurons in the
cerebellar nuclei. Borosilicate pipettes (OD 2 mm, ID
1.16 mm, 4-10 M, ~1-2 pum tip diameter) filled with 2 M
NaCl solution were positioned stereotactically using an
electronic pipette holder (Luigs & Neumann, Ratingen,
Germany). Signals were sampled at 10 KHz (Digidata
1322A, Axon Instr., Foster City, CA, USA), amplified,
filtered, and stored for offline analysis (Multiclamp 700A,
Axon Instr.). Purkinje cells in the cerebellar cortex were

stimulated using custom-made urethane-insulated tungsten
electrodes with two tips (separated ~25 pm). A single
negative 100-us pulse of 100-400 pA (Cornerstone BSI-
950, Dagan, Minneapolis, MN, USA) was used to activate
the surrounding cerebellar cortical tissue. Stimulus loca-
tions were never deeper than 0.5 mm and were positioned
in Lobule VI or paramedian lobule. Neurons of the
cerebellar nuclei were identified by recording their charac-
teristic activities [26]. Once a responsive area within a
cerebellar nucleus was found, multiple tracks were made to
record both stimulus response activity and spontaneous
activity. Evoked activity was recorded for at least 70 trials
of 2 s each (at a frequency of 0.5 Hz) before or after which
spontaneous activity was recorded for >2 min. Histological
verification of the location of recordings was done by
injection of 4% Alcian blue dye.

Analysis of Electrophysiological Data

Off-line analysis of neuronal firing rates was performed in
Matlab (Mathworks Inc. Natick, MA, USA) as previously
described by Goossens and colleagues [27]. Firing fre-
quency, coefficient of variance (CV; standard deviation
(SD) interspike interval/mean interspike interval), and
peristimulus histograms of the extracellularly recorded
neuronal activities in the cerebellar nuclei were constructed
using custom made routines in Matlab (Mathworks). To
identify statistically significant responses to electrical
stimulation of the cerebellar cortex from peristimulus
histograms, we constructed an analog representation of
each spike train using Gaussian local rate coding [28]. The
sum of these Gaussians represents the instantaneous firing
frequency, which we normalized. Poststimulus excursions
of the mean instantaneous frequency that exceeded three
times the standard deviation were marked as statistically
significant responses [26] and were used to specify the
latency of the inhibition. We used a Gaussian width of 1 ms
to determine the occurrence of the spike rate change,
typically at <6 ms after the stimulus onset. Any spiking
activity that occurred during the stimulus artifact was not
included in the analysis. Statistical analysis was done using
unpaired Student’s ¢ tests (two tailed) assuming equal
variances. Differences were considered to be significant
when the p value<0.05. Data are presented as mean +
standard error of the mean.

Results
Light Microscopy

Immunohistochemical calbindin stainings labeled all parts
of the Purkinje cells including their cell bodies, dendrites,
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and axons in both wild types and fgs. Labeled Purkinje cell
terminals were found throughout the medial cerebellar
nuclei, lateral cerebellar nuclei, as well as the anterior and
posterior interposed cerebellar nuclei (Fig. 1). In addition,
many labeled terminals were observed in the medial
vestibular nuclei and superior vestibular nuclei (Fig. 1a,b),
while only few were observed in the nuclei prepositus
hypoglossi (data not shown). In both wild types and #gs,
labeled Purkinje cell terminals were mostly adjacent to cell
bodies and proximal dendrites of their target neurons (see
also [23]). No significant differences were observed among
the densities of terminals in the lateral cerebellar nuclei and
interposed cerebellar nuclei (p=0.2; N=3 for both wild type
and zg) or between #gs and wild types (data of both
cerebellar nuclei pooled; p=0.7; N=3).

Electron Microscopy

Five-Week-Old Animals The morphology and postsynaptic
distribution of calbindin-labeled Purkinje cell terminals
were initially analyzed in 5-week-old animals, as this is
the age when ataxia is present for ~1-2 weeks [8]. Labeled
Purkinje cell terminals as well as their nonmyelinated
preterminal segments and myelinated axons could be
readily identified in the various cerebellar nuclei and in

Fig. 1. Distribution of
calbindin-labeled Purkinje cell
terminals in the cerebellar and
vestibular nuclei in wild types
(WT) and tottering (7g) at the
light microscopic level.

a-b Note the high densities of
labeled terminals in the lateral
cerebellar nucleus (LCN) and
interposed nucleus (/N) and the
intermediate density in the
superior vestibular nucleus
(SVN). e—f Higher magnifica-
tions show labeled Purkinje cell
terminals opposed to the somata
of neurons in the interposed
cerebellar nuclei. Asterisks indi-
cate somata of nuclear neurons.
Scale bars indicate 450 pum in
aand b, 75 um in ¢ and d, and
25 um in e and f
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the superior vestibular nucleus (Fig. 2). Purkinje cell ter-
minals in wild types were densely packed with pleiomorphic
vesicles and they established one or more symmetric
synaptic contacts with the soma and/or a dendritic segment
of their target neurons as described previously for rats ([23];
for criteria of synaptology, see also [29]; Fig. 2a). The vast
majority of the Purkinje cell terminals included at least a few
mitochondria, but some of them were filled with as many as
ten mitochondria (see e.g., Fig. 2¢). Purkinje cell terminals in
tgs showed the same content of vesicles as well as the same
type and distribution of synapses, but they were enlarged due
to the presence of vacuoles (Fig. 2b,d).

Quantitative analyses of the Purkinje cell terminals (N=
3 and n=204 for #g; N=2 and n=158 for wild type) of the
5-week-old animals at the ultrastructural level confirmed
and extended the findings described above. First, we did
not find any significant difference in the density of Purkinje
cell terminals among wild types and fgs (p=0.3; Fig. 2e¢).
Next, we showed that the terminals in fgs were indeed
significantly enlarged (»p<0.01) and that more terminals
contained vacuoles (p<0.05; Fig. 2e,f) than in wild type.
Moreover, of the terminals that did contain one or more
vacuoles those in the #g contained a higher number of
vacuoles (p<0.05). Similarly, the number of mitochondria
per terminal tended to be increased in zg, which might
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Fig. 2. Electron micrographs of
calbindin-labeled Purkinje cell
terminals taken from 5-week-old
mice. a, b Purkinje cell termi-
nals in the lateral cerebellar
nucleus of wild types (WT) and
tottering (7g), respectively.

¢, d Purkinje cell terminals in
the superior vestibular nucleus
of WT and Tg, respectively.
Note that the Purkinje cell ter-
minals in Tg contain vacuoles
(asterisks) and in some cases
(upper left corner in d) swollen
mitochondria. The terminals in
a, b, and c establish symmetric
synaptic contacts (open
triangles). Scale bar in a indi-
cates 550 nm, in b 350 nm,
and in ¢ and d 625 nm.

e—g Histograms showing the
morphological characteristics of
Purkinje cell terminals in WT
(black) and Tgs (white) in the
cerebellar nuclei (CN). e Densi-
ties of terminals (/eff) and their
surface areas (right). f Number
of terminals that have vacuoles
(left) and of those terminals, the
average number of vacuoles per
terminal (right). g Number of
terminals with mitochondria

(left) and of those terminals, the e
average number of mitochondria 400 * 25
per terminal (right). Asterisks " ’
indicate significant differences g_
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contribute to the enlargement of terminals (Fig. 2g). Still
the number of terminals that contained mitochondria is not
increased (p=0.9). To find out as to whether neurotrans-
mission and/or compensatory synaptic mechanisms may
take place in Purkinje cell terminals of 5-week-old #gs, we
also quantified their number of synapses per terminal. We
did not find any significant difference between wild types
and mutants in this respect (p=0.3; Fig. 5).

Six-Month-Old Animals The analysis of the Purkinje cell
terminals in 5-week-old g animals showed that they were
moderately but significantly enlarged and that they
contained significantly more vacuoles, while their number
of mitochondria tended to be slightly increased. To find out
as to whether these pathologies persisted and/or deteriorated
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over time, we investigated the morphology of Purkinje cell
terminals (V=3 and n=172 for tg; N=3 and n=211 for wild
type) in the cerebellar nuclei of 6-month-old mice. Similar to
the 5-week-old animals, the density of Purkinje cell
terminals was not significantly reduced in the cerebellar
nuclei of the 6-month-old fg mutants (p=0.4), while the
average surface area of their terminals was significantly
larger than that in their age-matched wild-type littermates
(»<0.001; Fig. 3). This observation was corroborated by the
findings that the average numbers of terminals that contained
vacuoles and/or mitochondria were significantly larger in ¢g
than those in wild-type littermates (p<0.001 and p<0.01,
respectively). In addition, the number of vacuoles per
terminal as well as the mitochondria per terminal was
significantly (both p values<0.01) increased in these
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Fig. 3. Electron micrographs of
calbindin-labeled Purkinje cell
terminals taken from 6-month-
old mice. a, b Purkinje cell
terminals in the lateral cerebellar
nucleus of wild types (WT) and
tottering (7g), respectively.

¢, d Purkinje cell terminals in
the interposed cerebellar nucleus
of wild type (c¢) and tottering
(d). Note that the Purkinje cell
terminals in tottering contain
vacuoles (asterisks in b) and
whorled bodies (membranous
lamellar structures in d). The
terminals in a, b, and ¢ establish
symmetric synaptic contacts
(open triangles). Scale bar in

a indicates 350 nm, in b and

¢ 625 nm, and in d 550 nm.
e—g Histograms showing the
morphological characteristics of
Purkinje cell terminals in the
cerebellar nuclei of 6-month-old
WTs (black) and Tgs (white).

e Densities of terminals (/eff)
and their surface areas (right).

f Number of terminals that have
vacuoles (leff) and of those
terminals, the average number of
vacuoles per terminal (right).

g Number of terminals with e
mitochondria (/eff) and of those
terminals, the average number of 400 * 2.5
mitochondria per terminal =
(right). Asterisks indicate = 2
significant differences S 300
=]
& 15
Q 200
© 1
©
£ 100
= 0.5
2
0 =0

terminals. Interestingly, the morphology of the vacuoles got
worse over time in that they showed more irregular shapes
(compare Figs. 2 and 3) and that their number per terminal
increased significantly (p<0.05) compared to S-week-old
tgs. Moreover, more fg terminals contained vacuoles at
6 months than at 5 weeks (p<0.01), whereas the wild-type
terminals tended to show less vacuoles per terminal at
6 months then at 5 weeks of age (p=0.16). Similarly, the
numbers of terminals that had mitochondria in the 6-month-
old 7gs were significantly higher than those in the 5-week-
old 7gs (p<0.01), but not in the wild types (p=0.8). The
impact of the fg mutation on the Purkinje cell terminals in
6-month-old mice was further indicated by the presence of
so-called whorled bodies (Fig. 3d). These large structures,
which can also be observed in Purkinje cell terminals
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following olivary lesions and might be a result of increased
production of smooth endoplasmic reticulum [22], were
present in 7% of the terminals. Still, neurotransmission
between the Purkinje cell terminals and their target neurons
may still occur in these older /g mutants, because the number
and structure of the synapses appeared intact as compared to
wild types (p=0.2; Fig. 5). Thus, ultrastructural analyses of
the cerebellar nuclei in the 6-month-old animals showed that
the pathology of the Purkinje cell terminals in adult fg
mutants progresses steadily, but they also suggest that
synaptic neurotransmission is possible.

Two- to Three-Week-Old Animals If the morphological
aberrations of the Purkinje cell terminals in #g contribute
to their behavioral phenotype, one expects that these
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abnormalities start to occur in the period when the ataxia
start to occur, i.e., at the age of 3 to 4 weeks [8]. We
therefore investigated whether the morphological abnor-
malities were already apparent at 2—-3 weeks of age. Indeed,
analysis of Purkinje cell terminals of these young animals
did not show a significant difference among wild types
(N=4; n=116) and fgs (N=4; n=118) for any of the
morphological parameters described above (Fig. 4). Thus,
the density and shape of the terminals as well as those of
the mitochondria inside these terminals appeared normal,
and there were no signs of pathology such as high numbers
of vacuoles or whorled bodies or altered numbers of
synapses (Fig. 5). The onset of the cytological abnormal-
ities in the Purkinje cell terminals in g must therefore occur
between 3 and 5 weeks after birth.

Electrophysiology
The ultrastructural data described above showed that the

numbers of synaptic contacts between Purkinje cells and
their target neurons in the cerebellar nuclei are not affected

in fg mutants (see also Fig. 5), while the content of the
Purkinje cell terminals show signs of progressive pathology.
These findings raise the questions as to whether synaptic
neurotransmission is possible at the Purkinje cell terminals
and, if so, whether the temporal pattern of the postsynaptic
activity in the cerebellar nuclei neurons is normal. We
therefore investigated the latency and duration of inhibition
in the cerebellar nuclei neurons induced by activation of the
Purkinje cells as well as the temporal pattern of spontaneous
activities of the cerebellar nuclei neurons.

Purkinje cell stimulation in the cerebellar cortex of
6-month-old animals resulted in clear inhibition in the
cerebellar nuclei neurons in both zg and wild type (Fig. 6).
No differences were found among #g and wild-type mice in
the threshold for eliciting an inhibitory response (p=0.4),
and the latency and duration of these responses were also
not significantly different. In responsive neurons, the firing
was interrupted with a latency of 3.1£0.6 ms in zg and 4.2+
0.7 ms in wild type (n=7 for both genotypes; p=0.2;
Fig. 6b), while the duration of the inhibition lasted 4.4+
0.7 ms in #g and 4.6+1.2 ms in wild type (n=7 for both
genotypes; p=0.6). Apart from the initial inhibition, some
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Fig. 4. Electron micrographs of calbindin-labeled Purkinje cell
terminals taken from 2-3-week-old mice. a, b Purkinje cell terminals
in the lateral cerebellar nucleus of wild types (WT) and tottering (7g),
respectively. Note that the Purkinje cell terminals in tottering do not
contain pathological inclusions and that the terminals in a and b
establish symmetric synaptic contacts (open triangles). Scale bars in a
and b both indicate 625 nm. c—e Histograms showing the morpholog-
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ical characteristics of Purkinje cell terminals in the cerebellar nuclei of
2-3-week-old WT (black) and Tg (white). ¢ Densities of terminals
(left) and their surface areas (right), respectively. d Number of
terminals that have vacuoles (/eff) and of those terminals, the average
number of vacuoles per terminal (right). e Number of terminals with
mitochondria (leff) and of those terminals, the average number of
mitochondria per terminal (right)
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Fig. 5. Histograms showing the number of synapses per terminal for
3-week-old, 5-week-old, and 6-month-old wild-types (WT; black) and
tottering mice (7g; white). Note that no significant differences are
found between the genotypes among any of the three different ages

cells responded with a consecutive increase in firing
frequency (n=4 for both wild type and #g). The latency of
this rebound excitation varied widely in both groups and
was not significantly different (p=0.3) among the two
genotypes (5.6+£2.3 ms in #g and 7.7+2.4 ms in wild types).
Thus, these data indicate that the Purkinje cell terminals are
functionally intact when activated concertedly in an
artificial fashion using electrophysiological stimulation.

The finding that neurotransmission at the synapses of the
Purkinje cell terminals in the cerebellar nuclei of #g can
occur following artificial electrical stimulation does not
necessarily imply that this process operates normally under
natural circumstances. We therefore also recorded sponta-
neous activities of the cerebellar nuclei neurons that receive
Purkinje cell input (Fig. 7a). Long recordings of sponta-
neous activity showed that the average firing frequency of
these neurons in the lateral and medial cerebellar nuclei of
6-month-old g mice (64.7£3.6 Hz; N=5 and n=44) is
significantly higher (p<0.01) than that of wild-type
littermates (48.5+3.0 Hz; N=5 and n=70; Fig. 7b). In
addition, the coefficient of variance of these spiking
activities in #g (1.44+0.22) was significantly higher (p<
0.01) than that in wild types (0.99+0.1; Fig. 7c). These data
are in line with the hypothesis that under physiological
conditions, the inhibition imposed by the Purkinje cells
onto the cerebellar nuclei neurons in zg is less effective and
less consistent than that in wild types.

Discussion

The main finding of the present study is that Purkinje cell
terminals in the cerebellar nuclei in zg show signs of
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structural damage such as an increase in size, swelling of
mitochondria, presence of pathological vacuoles, and
formation of large whorled bodies, while their synapses
appear functionally intact. These morphological observa-
tions are corroborated by the finding that the activity
patterns of their postsynaptic neurons in the cerebellar
nuclei are faster and more irregular than those of their wild-
type littermates. As will be discussed below, the morpho-
logical and physiological findings each have their own
implications, but together they suggest that the pathology in
Purkinje cell terminals in g may contribute to a suboptimal
neurotransmission in their cerebellar nuclei and thereby to
their behavioural deficits.

The observation that the number of Purkinje cell
terminals and synapses were not affected in fg agreed with
the fact that we found normal latencies and duration values
for inhibition in the cerebellar nuclei neurons following
artificial stimulation of the Purkinje cell input. These findings
are in line with the findings in g that electrical stimulation of
floccular Purkinje cells in their vestibulocerebellum can
evoke short latency eye movements [9] and that cortical
lesions in their anterior vermis can have a positive impact on
the occurrence of intermittent myoclonus-like movements
[30, 31]. Thus, neurotransmission appears possible at the
synapses formed by the Purkinje cell terminals and their
target neurons in the cerebellar and vestibular nuclei, but the
question remains to what extent the pathology in the
Purkinje cell terminals impairs signal coding.

The occurrences of swollen mitochondria and patholog-
ical vacuoles and to a lesser extent also those of the
whorled bodies form the most prominent pathological
changes that can be found in the Purkinje cell terminals of
tg mice. The exact mechanisms by which these three
phenomena can be explained remain to be shown, but
several possibilities should be addressed. First, the Purkinje
cell terminals in #g contain the mutated P/Q-type Ca*'-
channels and thereby they will most likely directly show
altered dynamics and kinetics of their vesicle release, which
in turn may influence the constitution of the organelles
inside them [32-35]. Second, the increased irregularity of
Purkinje cell firing in #g contributes to the occurrence of
high frequency bursts of simple spikes [9]. Increased simple
spike firing frequencies have been shown to affect the
formation of vacuoles, mitochondria, smooth endoplasmatic
reticulum, and cause the formation of whorled bodies, e.g.,
in response to lesions of the inferior olive [22, 36, 37].
Although the changes in simple spike firing in #g are not as
profound as seen in wild-type animals after lesioning the
inferior olive, the effects in zg are chronic and could there-
fore amount to a similar effect on Purkinje cell terminals.
For example, Rossi and colleagues showed that the forma-
tion of vacuoles, mitochondria, smooth endoplasmatic
reticulum, and whorled bodies were all affected in a
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Fig. 6. Cerebellar nuclei neurons responding to stimulation of
Purkinje cells in the cerebellar cortex of 6-month-old wild-type and
tottering mice. a Overlay of 100 traces of a single unit recording from
an interposed nucleus neuron of a wild-type (WT, left panel) and
tottering (7g; right panel) mouse. Scale bars indicate 500 pV
(vertical) and 5 ms (horizontal) in the left panel and 200 nV (vertical)
and 5 ms (horizontal) in the right panel. Dip in lower trace indicates
stimulus pulse of 100 pus. b Accompanying scatter plot of single unit
activity showing the same period of inhibition as in a. ¢ Gaussian fit
with a 1-ms time constant. Solid blue line indicates the mean Gaussian
fit and the dotted horizontal lines indicate £3 SD used to calculate the

dynamic fashion in particular time frames after lesioning
the olive. Presumably, the changes in smooth endoplasmic
reticulum that were observed by Rossi and colleagues, but
not by us, were directly related to those of the whorled

latency (see “Materials and Methods” section for details). Note that
both these wild-type and tottering cells responded with a significant
inhibition (solid red line) followed by a significant excitation (solid
green line; see text for details). Vertical scale bars indicate 0.3 and 0.2
normalized frequency in the left and right panel, respectively. d
Average latency (leff) and duration of the inhibition (right) following
stimulation of the cerebellar cortex. Dots indicate values of individual
recordings and horizontal bars indicate the average values per
genotype. Red dots (wild type) and circles (Tg) indicate the latency
and duration of the inhibition for the examples used in a

bodies [38, 39], which were in fact also more substantial in
their study than in the current one [22]. Therefore, the
chronic occurrence of high frequency bursts in Purkinje cell
activity in #g may trigger multiple intracellular mechanisms,
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Fig. 7. Activity patterns of a
cerebellar nuclei neurons of
6-month-old wild-type and
tottering mice. a Typical exam-
ples of extracellular recordings
of cerebellar nuclei neurons
from the lateral dentate nucleus
of a wild-type (WT, lefi panel)
and tottering (7Tg, right panel)
mouse. Scale bars indicate

200 nV (vertical line) and

100 ms (horizontal line).

b Average firing frequencies b
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which in turn could lead to the increase of the number and
volume of mitochondria as well as the formation of
vacuoles and whorled bodies within the same terminals.
The findings described and discussed above raise the
question to what extent the pathological aberrations in the
Purkinje cell terminals in #g interact with those in their
dendrites and cell bodies and to what extent they both
contribute to the cerebellar movement disorders [9, 16, 17].
The possibility that the pathological process at the terminals
interacts with that at the cell body and dendritic arbor and
that they both contribute to the behavioral deficits is
supported by the observation that the period in which the
morphological aberrations in the terminals start to occur,
i.e., between the third and fifth postnatal week, coincides
with the period in which the dendrites show their first
abnormalities and in which the first signs of ataxia start to
occur [8, 17]. Moreover, it should be noted that abnormal-
ities occurring in the axons themselves may also interact
with those in the dendrites and terminals. In older #gs
(>6 months), the axons also show signs of swelling
with accumulations of cytoplasmic organelles, irregularly
arranged microtubules, and inclusions of a lysosomal origin
[17, 18], raising the possibility that propagation of action
potentials down the Purkinje cell axons can also be affected
in these #g mice. Such a deficit may be especially detri-
mental, because during burst activity, the simple spike
frequency in fg mice can even exceed the maximum
frequency that can be transmitted down the Purkinje cell
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axon in a healthy rodent [9, 40, 41]. Thus, since the
swelling and abnormalities that occur in the axons and
terminals may further reduce this maximum frequency in
tg, the synaptic efficacy of the high frequency simple spike
bursts at their cerebellar nuclei neurons will be even lower.
This reduced efficacy may add to the more direct cell
physiological deficits caused by the mutated P/Q-type
voltage-gated calcium channels in Purkinje cell terminals
that will affect their machinery of neurotransmitter release,
as has also been shown for other cerebellar GABAergic
inhibitory synapses [42—44]. Taken together, our previous
and present results provide ample evidence that the
information relayed by the Purkinje cells in #g mice is
scrambled due to the altered synaptic input and decreased
calcium influx in their dendrites and somata, and we
propose that the ultrastructural aberrations in the axons
and terminals further scramble their pathological spiking
pattern. Thus, we conclude that the ultrastructural aberra-
tions in the axonal terminals of the Purkinje cells in #g
described in the current study are likely to contribute to
their cerebellar movement disorders.

The question remains to what extent the neurons in the
cerebellar nuclei show intrinsic abnormalities in fg mice.
Our current results show that in vivo these neurons fire
action potentials more irregular and faster and one may
argue that this manifestation of aberrant information
processing could be due to the fact that P/Q-type calcium
channels are also expressed in cerebellar nuclei neurons
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themselves [11, 45, 46]. However, recent evidence shows
that the impact of P/Q-type calcium channels on the
intrinsic excitability of cerebellar nuclei neurons is minimal
[47], which stands in sharp contrast to their impact on the
excitability of Purkinje cells [48]. Still, the cerebellar nuclei
are formed by various types of excitatory and inhibitory
neurons, which all have different electrophysiological
characteristics [47, 49, 50]. Thus, in order to further clarify
the origin of cerebellar movement disorders in calcium
mutants such as the g we do not only need to address the
transmission of the Purkinje cell to cerebellar nuclei neuron
synapse but also the intrinsic excitability of each type of
neuron in the cerebellar nuclei.

Conclusions

In conjunction, we conclude that the abnormalities at the
Purkinje cell terminals in #g are likely to interact with those
at their dendrites and cell bodies and that they probably all
contribute to an impaired output of the cerebellar nuclei
neurons and thereby to the ataxia.
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