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Summary

To manipulate an object skillfully, the brain must learn its
dynamics, specifying the mapping between applied force
and motion. A fundamental issue in sensorimotor control
is whether such dynamics are represented in an extrinsic
frame of reference tied to the object or an intrinsic frame of
reference linked to the arm. Although previous studies
have suggested that objects are represented in arm-cen-
tered coordinates [1–6], all of these studies have used
objects with unusual and complex dynamics. Thus, it is
not known how objects with natural dynamics are repre-
sented. Here we show that objects with simple (or familiar)
dynamics and those with complex (or unfamiliar) dynamics
are represented in object- and arm-centered coordinates,
respectively. We also show that objects with simple dynam-
ics are represented with an intermediate coordinate frame
when vision of the object is removed. These results indicate
that object dynamics can be flexibly represented in different
coordinate frames by the brain. We suggest that with experi-
ence, the representation of the dynamics of a manipulated
object may shift from a coordinate frame tied to the arm
toward one that is linked to the object. The additional com-
plexity required to represent dynamics in object-centered
coordinates would be economical for familiar objects be-
cause such a representation allows object use regardless
of the orientation of the object in hand.

Results

We used a bimanual object-manipulation task in which partic-
ipants grasped two handles attached by a virtual elastic band
(Figure 1) and moved the right hand to stretch the band while
holding the left hand still. In this task, participants learn to
compensate for the effects of right-hand movement by gener-
ating appropriate forces with the left hand [5, 7–9]. To test
whether participants represent dynamics in object- or arm-
centered coordinates, we examined how this learning trans-
ferred when the object was moved to a new location involving
a change in arm configuration.

Six different groups of participants experienced one of three
object conditions in one of two armconfigurations (Figure 2). In
the straight-visible condition, the elastic band was visible and
directly linked between the hands to create an object with rel-
atively simple dynamics. The straight-invisible condition was
the same except that the band was not visible. In the pulley
condition, the visible band was wrapped around a virtual pul-
ley to create an object with more complex dynamics. There-
fore, in the pulley condition the experienced force at the left
hand is not parallel to the movement direction of the right
hand, whereas, in the straight conditions, the experienced
force is parallel to the movement direction of the right hand.
Each of these conditions was tested in two arm configurations
with the end of the band attached to the left hand oriented in
either the transverse or sagittal plane.
The experiment consisted of two phases. In the first phase,

participants started with the object in the training position,
with the left hand aligned in the sagittal plane with the left
shoulder and the left elbow angle at 115!. In standard trials,
theywere instructed to briefly extend the band 5 cmbymoving
their right hand to a visible target (black circles in Figure 2) and
back while keeping their left hand still. The stiffness of the
band was 3.5 N/cm, and therefore the peak force on the left
hand was approximately 17.5 N. To assess learning at the
training position, we included catch trials (random one in ten)
in which we measured the force applied by the left hand while
locking the left handle in place. To determine the coordinate
frame in which dynamics are represented, we also included tri-
als (one in ten) in which the object was translated to the right
(transfer position) such that the left handwas rotated 30! about
the shoulder. In these transfer trials, as in catch trials, wemea-
sured the force applied by the left hand while locking the left
handle in place. After 380 trials (or 38 batches of ten trials),
the object was moved to the transfer position and the second
phase began. Participants performed an additional 110 trials
(11 batches) including catch trials (random one in ten) in addi-
tion to the standard trials.
We expected that participants would accurately direct their

right hand to the visual target, and would generate similar
forces with the right hand, in all conditions and trial types.
To test whether this was the case, we computed, for each par-
ticipant, the median right-hand movement direction, relative
to the target, at the time of peak right-hand force as well as
the peak right-hand force in five types of trials: standard and
catch trials in the training position during phase 1, catch trials
in the transfer position during phase 1, and standard and
catch trials in the transfer position during phase 2. We then
computed, for each arm configuration (two), object condition
(three), and trial type (five), averages based on participant
medians. Average right-hand direction ranged from 21.3! to
3.4! across the 30 cases, and the average peak right-hand
force ranged from 15.4 to 19.9 N. The average time to peak
right-hand force ranged from 216 to 339 ms after movement
onset. Three-way (two arm configurations 3 three object con-
ditions 3 five trial types) ANOVAs revealed a significant effect
of trial type on peak right-hand force (F4,20 = 4.44; p = 0.02).
However, the range of forces across trial types was less
than 1 N. No effects of arm configuration, object condition,*Correspondence: flanagan@queensu.ca
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or trial type were observed for right-hand movement direction.
Thus, right-hand movements were consistently directed to the
visual target, and similar forces were generated by the right
hand in all situations.

To examine learning in the training position as well as trans-
fer of learning in the transfer position, we computed, for each
participant, the median peak displacement of the left hand in
each successive batch of standard trials in phases 1 and 2.
Figure 3 shows the mean left-hand displacement, averaged
across participants, as a function of batch for each object con-
dition and arm configuration. As illustrated in the figure, at the
start of phase 1 larger peak displacements were observed in
the transverse compared to the sagittal arm configuration. In
addition, for the transverse configuration, the peak displace-
ment in the first batch was greatest for the pulley and least
for the visible straight band. Paired one-tailed t tests revealed
that, for all six combinations of object condition by arm config-
uration, the peak left-hand displacement in the last batch of
ten trials in the training position was significantly smaller
than in the first batch of trials (p < 0.05 in all six cases; Bonfer-
roni correction). Thus, significant learning was observed even
whenmanipulating objects with relatively simple dynamics. As
can be appreciated in Figure 3, peak left-hand displacement
tended to increase slightly when the object was translated to
the transfer position at the start of phase 1 but was generally
smaller than at the beginning of phase 1.

To quantify steady-state performance in the training posi-
tion, we computed, for each participant, the median force
vector generated by the left hand over the last 19 catch trials
(i.e., the last half) delivered at the training position. To assess
transfer, we computed the median force vectors over the last
19 transfer trials. Finally, to quantify steady-state performance
after learning at the transfer position, we computed themedian
force vector over the last six catch trials delivered at the trans-
fer position. The blue lines in Figure 2 show the force vectors
for the catch trials in the training and transfer positions. These
lines represent left-hand performance at these two positions
after learning. The green lines show the force vectors for the
transfer trials and represent the generalization of learning
from the training to the transfer position before the left hand
experienced forces in the transfer position. Note that the aver-
age peak force generated by the left hand in catch and transfer
trials (11.4 N) was smaller than the average force (16.9 N) gen-
erated by the left hand in standard trials. This indicates that
only a component of the robot-generated force on the left
hand, in standard trials, is compensated for with predictive
force generation. The remaining force in standard trials is
presumably counteracted with a combination of mechanical
stiffness (because the left hand is slightly perturbed) and
reflexive increases in force.
If object dynamics are represented in arm-centered coordi-

nates, we would expect the force vector generated by the left
hand in transfer trials to rotatewith the arm and thus be rotated
30! (dotted lines in Figure 2) from the direction of the elastic
force. Conversely, if object dynamics are represented in ob-
ject-centered coordinates, we would expect the force vector
to be aligned with the direction of the elastic force (dashed
lines in Figure 2). As illustrated in Figure 2, when vision was
available the dynamics of the straight band were primarily
represented in object-centered coordinates, whereas the
dynamics of the band and pulley were primarily represented
in arm-centered coordinates. Moreover, when vision of the
straight band was removed, an intermediate representation
was observed.
To quantify transfer of learning, we evaluated transfer per-

formance relative to steady-state performance at the transfer
position. That is, for each participant, we subtracted the angle
of the median force vector in transfer trials from the angle of
the median force vector in catch trials delivered after learning
at the transfer position. Figure 4A shows the resulting transfer
angles for the three object conditions and two arm configura-
tions in polar coordinates on three unit circles. An angle of zero
would indicate perfect transfer in object-centered coordi-
nates, and an angle of 30! would indicate perfect transfer in
arm-centered coordinates. To assess the effects of condition
and configuration on transfer angle, we carried out a two-
way (three by two) between-subjects ANOVA. Significant
effects of both object condition (F2,30 = 22.5; p < 0.001) and
arm configuration (F1,30 = 6.7; p = 0.015) were observed, but
there was no interaction (F2,30 = 0.55; p = 0.58). Figure 4B
shows the means and standard errors for each combination
of object condition by arm configuration. The effect of object
conditionwas assessed furtherwith two planned comparisons
collapsing across arm configurations. To determine the effect
of dynamics complexity, we compared the combination of the
two straight-band conditions against the pulley condition. The
transfer angle was greater in the pulley condition (p < 0.001).
To assess the role of vision of the object, we compared the
two straight-band conditions. The transfer angle was greater
when the object was not visible (p = 0.043). In addition to these

Figure 1. Apparatus

While seated, participants grasped two handles, each attached to a planar,
force-generating, two-joint, robotic manipulandum. The arms were sup-
ported by low-friction air sleds (not shown), which restricted arm motion
to the horizontal plane. Participants looked down onto a horizontal semis-
ilvered mirror, located above the hands, that displayed circles representing
their hand positions in the plane of arm movement. In the straight-visible
condition, participants also viewed an elastic band directly attached to
the two handles (as shown in the figure), and in the pulley condition, they
viewed an elastic band wrapped around a visible, rotating pulley (see
Figure 2).
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planned comparisons, we carried out post-hoc comparisons,
by using a Bonferroni correction, to determine whether the
transfer angle in the straight-visible and pulley conditions
was significantly different than 0! and 30!, respectively. Col-
lapsing across arm configurations, we found that the transfer
angle in the straight-visible condition (M = 6.9!) was reliably
greater than 0! (p = 0.006) and that the transfer angle in the pul-
ley condition (M = 23.7!) was reliably less than 30! (p = 0.034).
Thus, transfer in the straight-visible and pulley conditions was
primarily, but not purely, in object- and arm-centered coordi-
nates, respectively.

It is possible that the difference in generalization between
the straight-visible and pulley conditions is related to visual
complexity rather than mechanical complexity. Therefore, we
ran an additional group of participants by using an object
with simple mechanics but high visual complexity. We simu-
lated an elastic band running through a set of four pulleys (Fig-
ure 5A). Although visually complex, the mechanics in this
straight-pulley condition are identical to those in the trans-
verse straight conditions. The results for this condition are
shown in Figures 5B and 5C, which correspond to Figures 2
and 4A, respectively. The blue lines in Figure 5B show the
average force vectors generated by the left hand during catch
trials delivered (after learning) at the training and transfer posi-
tions in phases 1 and 2, respectively. The green line shows the
average force vectors during transfer trials delivered at the
transfer position in phase 1. Figure 5C shows the average
transfer angle—the angle of the force vector in transfer trials
(phase 1) minus the angle of the force vector in catch trials de-
livered at the transfer position (phase 2). The results for the
straight-pulley are very similar to those obtained for the

Figure 2. Force Vectors

The cartoons depict the arm configurations in the
training and transfer positions for all six combina-
tions of object condition (columns) and arm con-
figuration (top and bottom panels). Participants
stretched an elastic band (red lines) to a nearby
target (black circles) with their right hand. Each
blue cross represents the median force vector
generated by a given participant during catch
trials after learning. The thick blue lines show
mean force vectors, averaged across partici-
pants, and the blue ellipses represent the corre-
sponding 50% confidence ellipses. Each green
cross represents the median force vector during
transfer trials after learning in the training posi-
tion. The thick green lines show mean force
vectors, averaged across participants, and the
green ellipses represent the corresponding 50%
confidence ellipses. The predicted force-vector
directions based on transfer in object- and arm-
centered coordinates are represented by the
dashed and dotted lines, respectively.

straight-invisible band in the transverse
configuration (see Figure 2). In particu-
lar, transfer was intermediate between
object-centered and arm-centeredcoor-
dinates. Thus, although participants
could not exploit the complex visual
feedback provided in the straight-pulley
condition to form an object-centered
representation, the complex visual feed-
back did not lead to encoding in arm-

centered coordinates. In other words, the results suggest
that the arm-centered encoding seen in the pulley conditions
cannot be explained on the basis of visual complexity alone.

Discussion

Numerous studies have demonstrated that humans learn and
maintain internal models or representations of object dynam-
ics that are used both to estimate the motor commands re-
quired to achieve desired outcomes and to predict the sensory
consequences of our actions [1, 10–19]. Moreover, neurophys-
iological studies have shown that nonhuman primates are able
to learn the kinematics and dynamics of novel tools [20–23].
However, relatively few studies have examined the coordinate
frame in which object dynamics are learned. The results pre-
sented here suggest that the way in which we represent object
dynamics is flexible and depends on the complexity of the
dynamics. When experiencing the elastic band wrapped
around a pulley, participants represent the relatively complex
dynamics in arm-centered coordinates. The idea that complex
dynamics are encoded in arm-centered coordinates agrees
with the results of previous studies that have employed
objects with unusual and complex dynamics [1–5]. In contrast,
our results indicate that objects with simpler dynamics can
be represented in object-centered coordinates. After partici-
pants learned to minimize left-hand movement when manipu-
lating the straight visible band, this learning generalized in
object-centered coordinates.
Althoughwe have argued that objects with simpler dynamics

are encoded in object-centered coordinates, our results are
also consistent with the idea that such objects are encoded in
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Cartesian coordinates. However, we favor the object-centered
interpretation because such a representation would enable
generalization across changes in object orientation. Because
we used a virtual environment to simulate various mechanical
objects, the question arises of whether similar results would
be obtained with real objects (i.e., springs and pulleys). Al-
thoughwe cannot rule out the possibility that differenceswould
be observed, we believe that our objects were far more natural
than those used in previous studies because we simulated ob-
jectswithnatural physics. In addition, the fact that thedynamics
of one of our objects (the straight-visible spring) were encoded
in object-centered coordinates suggests that our simulations
were effective.

We found that when the straight elastic bandwas not visible,
dynamics were learned in an intermediate frame of reference
between arm- and object-centered coordinates. This finding
indicates that the representation of dynamics is not categori-
cal—that is, either arm- or object-centered. Indeed, somemix-
ture of coordinate frames was evident even in the straight-vis-
ible and pulley conditions. This result also suggests that vision
of an object can facilitate encoding of dynamics in object-cen-
tered coordinates. Note that, in addition to using objects with
complex dynamics, most previous studies demonstrating that
dynamics are learned in arm-centered coordinates have not
provided visual cues of dynamics [1–5]. We did not include
an invisible pulley condition because pilot data indicated that
transfer occurred in arm-centered coordinates and arm-cen-
tered encoding was observed even when vision of the pulley
and spring was provided. Using the same apparatus and gen-
eral approach employed in the present study, a previous study
[5] examined an object with complex dynamics (where the
force applied to the left hand depended on the velocity of
the right hand but acted at right angles to right-hand move-
ment direction) without visual cues about dynamics. Their ob-
servation that dynamics were encoded in pure arm-centered
coordinates supports our conclusions that both dynamics

Figure 3. Left-Hand Movement

The lines represent mean peak left-hand dis-
placement in the training and transfer positions,
averaged across participants, as a function of
trial batch. The shaded areas depict6 1 standard
error (SE). Each participant’s score is based on
the median of the standard trials per batch.
Transverse and sagittal arm configurations are
shown by thick and thin lines, respectively.

complexity and visual cues about dy-
namics can influence the way in which
object dynamics are represented.
Although we have suggested that the

way in which people encode object dy-
namics depends on the complexity of
dynamics, the critical factor influencing
how dynamics are encoded may be ex-
perience or familiarity. Thus, if an indi-
vidual frequently experienced pulleys,
we would expect him or her to represent
our visible pulley in object-centered co-
ordinates. We suggest that with experi-
ence with a particular class of objects,
the representation of dynamics shifts
from an arm-centered coordinate frame

to an object-centered coordinate frame. An arm-centered
frame may be developed initially as we experience an object
in particular configurations relative to our hands and arms.
However, as we gain experience with different configurations,
we may begin to develop a more general object-centered rep-
resentation that is independent of the position and orientation
of the object relative to the hands and arms.

Experimental Procedures

Forty-two right-handed participants (22 males, 20 females, 18–35 yr) took
part in the study after providing written informed consent. The experimental
procedures were approved by the Local Ethics Committee.

Equipment
Seated participants made two-dimensional reaching movements in the hor-
izontal plane while holding the handle of a planar, force-generating, two-
joint, robotic manipulandum (vBOT) [24] in each hand (Figure 1). Shoulder
straps restrained the upper body, and both arms were supported by low-
friction air sleds with the upper and lower arms in the horizontal plane. Par-
ticipants looked down onto a horizontal mirror that reflected the display of
an LCDmonitor suspended above. Themonitor displayed circles represent-
ing the participants’ hand positions, targets, and task-relevant visual feed-
back in the plane of the arm movements. The display was calibrated so that
visual feedback of the hands was overlaid on the true hand position.

Experimental Protocol
Participants were informed that an elastic band would be simulated be-
tween their hands and that they were required to stretch one edge of the
band to a target with their right hand while keeping their left hand still.
During each trial, start positions (1 cm radii) of the two hands were dis-

played as well as a target for the right hand (1 cm radius). Cursors (0.5 cm
radii) representing each hand position were always visible. A position-de-
pendent force linked the hands, simulating an elastic band with a linear
spring constant of 3.5 N/cm. With both hands in the start positions, the
band was not in tension and was slack until the band extended by 0.4 cm.
A trial consisted of making an out-and-back movement with the right
hand to the target while keeping the left hand as still as possible. Once
the participant’s hands were in their respective start positions, he or she
waited for an audio cue to begin the out-and-back movement with the right
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hand. The target appeared 5 cm away from the right-hand start position.
Participants received warnings when movements were too slow (greater
than 1 s) or if left-hand movement was greater than 1 cm.
Participants learned the task in one workspace location (training) and

were tested for generalization at another location (transfer). During training,
the start position for the left hand was aligned with the left shoulder in the
sagittal plane, with a 115! elbow angle. The transfer position was obtained
by rotating the left arm clockwise 30! about the left shoulder while maintain-
ing a constant elbow angle (Figure 2). The right hand moved such that the
object maintained its orientation in Cartesian coordinates.
Participants were randomly allocated to one of six groups (each of six

subjects), and each group was exposed to one of three object conditions
(straight-visible, straight-invisible, or pulley) in one of two arm configura-
tions (transverse or sagittal) (Figure 2). In the straight conditions, the object
was an elastic band connected between the hands, whichwere 12 cm apart.
In the straight-visible condition, a striped band was visible between the two
hand positions. A force applied by one hand resulted in a force of equal
magnitude and opposite direction upon the other and an appropriate widen-
ing of the visible stripes on the band. In the straight-invisible condition, the
elastic band was invisible. In the pulley condition, the elastic band was vis-
ible and wrapped 90! around a pulley (2 cm radius with four visible spokes),
which rotated as the band was stretched. The two hands were both 10 cm
from the center of the pulley in orthogonal directions.
An additional six subjects were exposed to an additional object condition

in the transverse configuration. In this straight-pulley condition, a visible

elastic band was wrapped around four pulleys (1 cm radii, with four visible
spokes, Figure 5A), so that both ends of the bandwere aligned in the sagittal
plane. The hand positions and dynamics of this condition were identical to
the straight-visible and straight-invisible conditions in the transverse plane.
During standard trials, the hands were dynamically linked by the spring.

For the quantification of learning and the measurement of the magnitude
and direction of the force anticipated by the left hand, catch trials were
included in which the hands were unlinked. The left hand was locked in
position by a high-stiffness virtual spring (35 N/cm) while the right hand
was allowed to move to the target and experienced the same position-
dependent force as in the standard trials.
For familiarizing participants with the task, they performed five trials in the

training position and five in the transfer position in which they moved their
right hand to the target and the left handle was locked in place. Participants
then performed 38 batches of ten trials each. The first nine trials of every
batchwere in the training position, and one of these trials (other than the first
or last) was randomly selected to be catch trial. The last trial of each batch
was also a catch trial, but in the transfer position. No forces were experi-
enced and no visual feedback of the object was provided while participants
moved between the training and transfer positions. Participants then per-
formed 11 batches in the transfer position. One trial in every batch (other
than the first or last) was chosen at random to be a catch trial.

Data Acquisition and Analysis
The two-dimensional position and robot-generated forces were recorded
for each hand at 1000 Hz. For assessment of performance, the direction
and magnitude of the force generated by the left hand at the time of maxi-
mum force in the right hand was calculated for all catch trials. We also com-
puted peak left-hand displacement, peak right-hand force, time to peak
right-hand force, and the direction of right-hand movement at the time of
peak right-hand force.
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Figure 4. Transfer Angles

(A) The transfer angles for all object conditions and arm configurations are
presented as normalized vectors in polar coordinates. For clarity, the vec-
tors for the object conditions are scaled differently. Each cross represents
the median transfer angle for a single participant, and the thick lines show
mean angles averaged across participants. The shaded areas represent 6
1 SE. Object-centered and arm-centered predictions are represented by
dashed and dotted lines, respectively.
(B) Themagnitude of the average transfer angle (61 SE) for each object-con-
dition is presented. Transverse and sagittal arm configurations are shown in
purple and cyan, respectively.

Figure 5. Straight-Pulley Condition

(A) Locations of the hands (red circles) and four pulleys used in the straight-
pulley condition.
(B) Each blue cross represents themedian force vector generated by a given
participant during catch trials after learning. The thick blue lines showmean
force vectors, averaged across participants, and the blue ellipses represent
the corresponding 50% confidence ellipses. Each green cross represents
the median force vector during transfer trials after learning in the training
position. The thick green line shows themean force vector, averaged across
participants, and the green ellipse represents the corresponding 50% con-
fidence ellipse.
(C) Each red cross represents the median transfer angle for a single partici-
pant, and the thick red line showsmeananglesaveragedacross participants.
The shaded areas represent 6 1 SE. Object-centered and arm-centered
predictions are represented by dashed and dotted lines, respectively.
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