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Abstract

Learning is often understood as an organism’s gradual acquisition of the association between a given sensory stimulus and
the correct motor response. Mathematically, this corresponds to regressing a mapping between the set of observations and
the set of actions. Recently, however, it has been shown both in cognitive and motor neuroscience that humans are not
only able to learn particular stimulus-response mappings, but are also able to extract abstract structural invariants that
facilitate generalization to novel tasks. Here we show how such structure learning can enhance facilitation in a sensorimotor
association task performed by human subjects. Using regression and reinforcement learning models we show that the
observed facilitation cannot be explained by these basic models of learning stimulus-response associations. We show,
however, that the observed data can be explained by a hierarchical Bayesian model that performs structure learning. In line
with previous results from cognitive tasks, this suggests that hierarchical Bayesian inference might provide a common
framework to explain both the learning of specific stimulus-response associations and the learning of abstract structures
that are shared by different task environments.
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Computational Neuroscience Freiburg), the Böhringer-Ingelheim Fonds, the European project SENSOPAC IST-2005-028056, and the Wellcome Trust. The funders
had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: dab54@cam.ac.uk

Introduction

Since the heyday of behaviourism, stimulus-response theories

of learning are a central theme in the theoretical neuroscience

of learning and have successfully explained a wide range of

experimental data in animal and human learning [1]. In par-

ticular, classical conditioning as propounded by Pavlov and

Skinner’s operant conditioning pioneered the concept that an

animal’s adaptive behaviour is based on associations between

sensory stimuli and motor responses [2–4]. Pavlov believed that

ultimately all of animal and human behaviour would be explained

on the basis of stimulus-response associations. Later, Rescorla and

Wagner formalized such associative learning in a very simple and

powerful learning rule [5,6] that explains a vast array of

experimental effects. In fact, the Rescorla-Wagner rule can be

considered as a form of a previously suggested learning rule, the

delta-rule, that can be used to train simple neural networks [7].

More recent neural network models such as back-propagation

[8,9] and basis function networks [10,11] are simply non-linear

extensions of the originally proposed models in the sense that

they implement a mapping from stimulus to motor response by

adapting (synaptic) weights in networks with fixed topology.

Similarly, most reinforcement learning schemes [12] seek to learn

environment-specific stimulus-response contingencies, rather than

more abstract adaptive policies that can cope with a variety of

different environments.

Critics were quick to point out that stimulus-response theories of

learning liken the nervous system to some kind of ‘‘complicated

telephone switchboard’’ [13] that continuously transforms im-

pinging sensory stimuli into motor responses. Learning in such a

switchboard consists of strengthening and weakening the connec-

tions between input relays and output units. Cognitive scientists

and psychologists have pointed out that many animal behaviours

seem to transcend simple associative learning [14,15], for example

the learning of mental maps [13], insightful learning [16] and

abstract rule learning [17]. Unfortunately, though, these alleged

types of ‘higher order’ learning have often resisted mathematical

formalization. Recent progress in the field of Bayesian learning,

however, suggests that some ‘higher order’ learning phenomena in

cognitive science and neuroscience could be explained by the

process of structure learning.

In contrast to parametric learning that is usually studied,

structure learning is not concerned with learning the particular

contingencies of a single task, for example, a particular stimulus-

response relationship. Rather, structure learning can be regarded

as a process of abstraction that extracts general invariants [18]. In

this way, general forms of a rule can be learned that are widely

applicable to a possibly large set of related tasks. Such structure

learning has been recently reported both in cognitive [19–25] and

motor neuroscience [26,27,18]. Here we study structure learning

in a sensorimotor association task.

Results

To investigate features of structure learning, we exposed

subjects to a stimulus-response learning task, where the stimulus-

response patterns were characterised by different structural

constraints. Subjects were presented with nine possible stimuli

and could respond with one of nine possible actions (see Figure 1A

and Methods for details). This defines a set of nine pairs of stimuli
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and their associated correct responses, resulting in 362,880 (9!)

possible one-to-one sensorimotor mappings. Subjects had to learn

six different mappings that were characterised by four different

structural features: (1) an identity mapping that constitutes the

baseline mapping, as it is most readily learned, (2) two shift

mappings, where the correct response was shifted either to the

right or to the left compared to the identity mapping, (3) two

mirror mappings, where the correct response was mirrored around

the vertical or horizontal axis, again compared to the identity

mapping, and (4) a random mapping where stimuli and responses

were not associated by any apparent rule (see Figure 1B). We

counted the number of trials it took subjects to learn any of the

mappings to assess their performance.

Importantly, there were two groups of subjects that learned the

two shift mappings and the two mirror mappings in reversed

order, i.e. the first group went from right-shift to left-shift and from

horizontal to vertical mirror and the second group went from left-

shift to right-shift and from vertical to horizontal mirror. Since

both of the shift mappings shared the shift structure and both of

the mirror mappings shared the mirror structure, we hypothesized

that learning one mapping (e.g. right-shift mapping of the shift

structure) would subsequently facilitate learning of the other

mapping with the same structure (e.g. left-shift). To assess this

hypothesis we analysed the number of learning trials in the two

groups – data shown in Figure 2.

As expected, learning the identity mapping was in most cases

faster than learning any of the other mappings – compare Table 1

and Table 2. Similarly, learning the random mapping was in most

cases much slower than learning any of the structured mappings

(see Table 1 and Table 2), which suggests that mappings with

structural constraints are learned more readily than mappings

without any obvious structure. We also computed for each subject

the ratio between the trials required for learning the random

mapping and the trials required for learning the first shift and the

first mirror mapping (Figure 3A). The median of all the ratios was

significantly smaller than unity (p,0.01, Wilcoxon signed rank

test), which again implies faster learning of the structured

mappings.

Interestingly, we also found within-structure facilitation effects.

For example, learning the second instance of the shift mapping

(e.g. left shift mapping in the first group) proceeded much faster in

most subjects than learning the first instance (e.g. right shift

mapping in the first group). Accordingly, the ratio of learning trials

between the second and the first occurrence of the shift mapping

was significantly below unity (p,0.01, Wilcoxon signed rank test),

which implies facilitation of learning for the second mapping

(Figure 3B). Since the two groups experienced the two shift

mappings in reversed order, this facilitation cannot be accounted

Figure 1. Task description. (A) Subjects had to learn a mapping from
a 363 stimulus board to a 363 action board. The stimulus was
presented by lighting up one of the nine squares. The subject then had
to press one of the nine response buttons associated to that stimulus.
(B) There were six possible mappings with four different structures (S1
to S4). The identity and the random structure comprised only one
mapping each. The shift structure consisted of a right-shift and a left-
shift mapping. The mirror structure consisted of a horizontal and
vertical mirror mapping.
doi:10.1371/journal.pone.0008973.g001

Figure 2. Numbers of trials required by subjects to learn the
different mappings. (A) The first group learned the right shift before
the left shift and the horizontal mirror before the vertical mirror. (B) The
second group learned the two versions of the shift and mirror
mappings in reverse order. Each group had 10 subjects. Statistical
comparisons between the different mappings in each group can be
found in Tables 1 and 2, and comparisons between the groups in
Table 3. ID = Identity mapping. RS = Right shift mapping. LS = Left shift
mapping. HM = Horizontal mirror mapping. VM = Vertical mirror map-
ping. RND = Random mapping.
doi:10.1371/journal.pone.0008973.g002

Table 1. P-values of paired Wilcoxon signed rank test for
comparing the number of learning trials of two different
mappings in Group 1.

Group 1 ID RS LS HM VM RND

ID - *0.002 *0.004 *0.006 0.016 *0.002

RS - - *0.004 0.91 0.16 *0.006

LS - - - 0.287 0.797 *0.002

HM - - - - 0.131 *0.002

VM - - - - - *0.002

RND - - - - - -

The highlighted fields show significant differences (P,0.01) between learning
two mappings. ID = Identity mapping. RS = Right shift mapping. LS = Left shift
mapping. HM = Horizontal mirror mapping. VM = Vertical mirror mapping.
RND = Random mapping.
doi:10.1371/journal.pone.0008973.t001

Structure Learning
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for by an intrinsic simplicity of either one of the two shift

mappings. This suggests that by experiencing the first instance of a

shift mapping, subjects have learned something general about shift

mappings that facilitated learning of the second instance.

Furthermore, we observed a similar facilitation pattern for

learning mirrored mappings, as the ratio between the second

and the first occurrence of the mirror mapping was also

significantly below unity (p,0.02, Wilcoxon signed rank test).

To test whether these results could be explained by merely

learning stimulus-response associations we employed four different

learning models to reproduce the observed facilitation effects.

First, we used a simple feed-forward neural network to regress the

different mappings. This translates our task into a supervised

learning problem. To examine the relative speed of learning we

used the number of trials taken to learn the random mapping as a

normalising factor (i.e. number of trials for a random mapping was

taken as unity). We initialized the network with the identity

mapping before learning either the right-shift mapping or the

random mapping. No facilitation was observed for learning the

shift mapping (Fig. 4B, NN-model). We then initialized the

network for the right-shift mapping before learning the left shift

mapping in order to study whether learning a right-shift might

facilitate learning a left-shift. Again there was no facilitation

(Fig. 4B, NN-model). We also used a simple reinforcement

learning model that learned the mappings from only binary

feedback, i.e. reward 1 if the correct action was chosen, and

reward 0 otherwise (see Methods for details). Actions were chosen

according to their value from a softmax-rule, and the action values

were updated using the Rescorla-Wagner rule. We performed the

same three experiments as in the neural network case and again

found no facilitation (Fig. 4B, RL-model).

In Bayesian models, the speed of learning a particular

hypothesis can be influenced by the setting of the prior. We

therefore devised two Bayesian models to account for the observed

facilitation effects – compare Figure 5. We used a standard, non-

hierarchical Bayesian model where the set of hypotheses was given

by the set of all possible mappings. We assigned a higher prior

probability to all the structured mappings considered in this study

Table 2. P-values of paired Wilcoxon signed rank test for
comparing the number of learning trials of two different
mappings in Group 2.

Group 2 ID RS LS HM VM RND

ID - *0.002 0.098 0.016 0.397 *0.002

RS - - 0.16 0.232 0.027 0.084

LS - - - 0.898 0.275 *0.01

HM - - - - 0.137 *0.002

VM - - - - - *0.002

RND - - - - - -

The highlighted fields show significant differences (P,0.01) between learning
two mappings. ID = Identity mapping. RS = Right shift mapping. LS = Left shift
mapping. HM = Horizontal mirror mapping. VM = Vertical mirror mapping.
RND = Random mapping.
doi:10.1371/journal.pone.0008973.t002

Figure 3. Relative facilitation of learning. (A) Mappings with
structural constraints were learned much faster than the random
mapping. (B) Learning the third (fifth) mapping was facilitated in both
groups compared to learning the second (fourth) mapping. Shown are
the medians and the lower and upper quartiles of the trial ratios of all
subjects and the average has been taken over both groups.
doi:10.1371/journal.pone.0008973.g003

Table 3. P-values of paired Wilcoxon ranksum test for
comparing the number of learning trials of different
mappings between Group 1 (G1) and Group 2 (G2).

G1 vs. G2

ID 0.021

RS 0.13

LS 0.382

HM 0.649

VM 0.649

RND 0.014

ID = Identity mapping. RS = Right shift mapping. LS = Left shift mapping.
HM = Horizontal mirror mapping. VM = Vertical mirror mapping. RND = Random
mapping.
doi:10.1371/journal.pone.0008973.t003

Figure 4. Modelling of the facilitation effect. (A) The experimental
data shows a strong facilitation of learning a structured mapping (right-
shift or left-shift) compared to a random mapping (RND). In addition,
there is also a strong facilitation from learning the first instance of a
shift mapping to learning the second instance. (B) The feed-forward
neural network (NN) and the reinforcement learning (RL) model show
no facilitation effects. The non-hierarchical Bayesian model shows a
facilitation effect for the structured mappings if the prior probabilities
of these mappings are elevated. The structure learning (SL) Bayes model
shows both facilitation effects, because by learning the first mapping
the posterior over structures assigns more probability to all other
mappings with the same structure. All plots show median values, for
the model these were computed over 100 simulation runs.
doi:10.1371/journal.pone.0008973.g004

Structure Learning
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(i.e. shifts and mirrors). Accordingly, such a model can account for

facilitated learning of structured mappings compared to the

random mapping (Fig. 4B, Bayes model). However, this model

fails to capture the effect of facilitated learning of the second

instance of a structure compared to learning the first instance (e.g.

facilitated learning of the left-shift when preceded by a right-shift).

Therefore, we constructed a hierarchical Bayesian model that not

only does inference over different hypotheses, but also maintains a

probability distribution over different structures. Thus, after

learning a particular hypothesis that is part of a certain structure

(e.g. the right-shift hypothesis of the shift structure) the probability

of that structure is increased. Then, after learning the right-shift

structure the learning of all shift structures is facilitated, because

the prior reflects an increased probability of encountering shift

structures. The hierarchical Bayesian model is therefore able to

account for both facilitation effects (Fig. 4B, SL-Bayes model).

Moreover, we investigated model predictions of how learning

proceeds over trials. We fed the Bayesian model with the action

and observation stream from subjects and computed the

probability the model would assign to choosing the correct action

given the subject’s evidence – compare Fig. 6. When initializing

the Bayesian model with the appropriate priors (as above, see

Methods), both facilitation effects become visible in the response

curves over trials. Learning a shift mapping facilitates learning a

second shift mapping (2nd and 3rd map in the upper panels of

Fig. 6), learning a mirror mapping facilitates learning a second

mirror mapping (4th and 5th map in the middle panels of Fig. 6),

and learning a random mapping is always slower than learning

any of the structured mappings (lower panels in Fig. 6). These

facilitation effects are also visible in the empirical frequencies of

choosing the correct action as exhibited by subjects (compare

Fig. 6. left panels). To compute these empirical probabilities of

action selection we determined the fraction of subjects that chose

the correct action in any one trial. While there is a good qualitative

correspondence between data and model for the dynamics of

learning, it is important to note that the number of trials required

to achieve comparable performance is very different. Especially,

subjects take roughly double the number of trials for learning the

random mapping compared to an ideal learner (compare Fig. 6.

lower panels).

To investigate possible sources of this difference, we examined

whether subjects succumbed to errors due to forgetting which an

ideal Bayesian actor would not suffer from. We considered two

kinds of errors. We defined the occurrence of the first kind of error

when a wrong response was repeated, i.e. when subjects gave the

same wrong response to a stimulus that they had already seen.

Clearly, an ideal actor would never repeat the same mistake.

Furthermore, we defined the occurrence of the second kind of

error when a correct response was forgotten, i.e. when subjects

gave the wrong response to a stimulus that previously was

answered correctly. Again, an ideal observer would not forget a

correct response. We analysed the occurrence of these two kinds of

errors when subjects learned the different mappings – see Fig. 7.

Both kinds of errors occurred most frequently when learning a

random mapping (p,0.01, Wilcoxon ranksum test), whereas there

were practically no errors when learning the identity mapping.

The numbers of both errors were also reduced when learning a

shift mapping for the second time, if another shift mapping had

been learned before (p,0.05, Wilcoxon ranksum test). For the

mirror mappings the number of errors in the first and second

exposure was not significantly different (p.0.05, Wilcoxon

Figure 6. Trial-by-trial evolution of learning. For the experimental
data we averaged over subjects to compute the probability that the
correct action was chosen on the basis of the fraction of subjects that
chose the correct action in each trial. For the model we determined the
probability of choosing the correct action by computing the probability
of choosing the correct action given the action and observation
stream of each subject and again averaged over subjects. All curves
were smoothed with a Savitzky-Golay-Filter of polynomial order 1 and
length 11.
doi:10.1371/journal.pone.0008973.g006

Figure 5. Graphical Model of the non-hierarchical and the
hierarchical Bayesian model. In the non-hierarchical model the
observations provide evidence for each hypothesis separately. In the
hierarchical model the observations not only provide evidence for the
hypotheses, but also for the different structures (which in turn might
shift some evidence to structure-compatible hypotheses).
doi:10.1371/journal.pone.0008973.g005

Structure Learning
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ranksum test). We also investigated the time course of errors and

found that the probability of repeating a wrong response was

elevated in early trials of learning a new mapping and that a high

proportion of these repetition errors were consistent with the

previously learned structure – see Fig. 7 (leftside panels). The time

course of forgetting a correct response was qualitatively similar.

However, the probability of forgetting the correct response was

highest a bit later into learning a mapping – see Fig. 7 (rightside

panels, blue lines). The occurrence of errors, however, did not

explain the observed facilitation effects. Disregarding the error

trials leaves the facilitation pattern qualitatively unchanged (Fig. 8),

which ensures that the facilitation pattern is not exclusively due to

forgetting. Thus, our Bayesian model, which does not include the

process of forgetting, is apt to account for the observed facilitation

effects presented in Fig. 1 and 8. However, the difference in time

scales of learning observed in the experiment compared to the

model predictions might be explained by the lack of forgetting in

the model (compare Fig. 6).

Discussion

In our experiments we found that human choice behaviour in a

sensorimotor association task requires structure learning processes

and cannot be accounted for by forming specific associations

between sensory stimuli and motor responses. Many traditional

learning schemes, like the Rescorla-Wagner rule or learning in

feed-forward neural networks with fixed topology, have concep-

tualized sensorimotor learning as acquiring an association between

a stimulus and the correct motor response. The facilitation effects

we observed, however, suggest that humans learn much more than

specific stimulus-response associations, namely that they also learn

to extract abstract invariants that are applicable to a broad class of

tasks. Learning a right-shift mapping, for example, facilitated

learning a left-shift mapping in our task. Similarly, learning a left-

shift mapping facilitated subsequent learning of a right-shift

mapping. Therefore, our results cannot be explained by one of the

two tasks being intrinsically easier than the other one. We

observed a similar facilitation also for different versions of a mirror

mapping. The only model that could explain this kind of

facilitation was a hierarchical Bayesian model that takes

probabilities over structures into account (e.g. shift structure),

such that learning one instance of a structure can lead to higher

prior probability of all the other instances of the same structure,

thereby entailing facilitation. While the model provided a good

qualitative fit to the observed facilitation effects, the time scales of

the predictions were very different from those observed in the

experiment. Subjects learned much slower than the Bayesian

learner, at least partly due to the process of forgetting. Thus, in

future it might be interesting to develop Bayesian models that

include processes of forgetting.

Figure 7. Forgetting errors in learning the different mappings.
Subjects committed two kinds of errors that involved forgetting. The
first kind of error (leftside panels) occurs when subjects repeat a wrong
response to a stimulus that they had already seen. The second kind of
error (rightside panels) occurs when subjects had already pressed the
correct button once, but later on seem to have forgotten this correct
response and pressed a different button when once more confronted
with the same stimulus. The upper panels show the total number of
errors committed by subjects when learning the different mappings.
The middle panels show the probability of an error occurring in each
trial following the first trial of a new mapping (averaged over all
subjects and mappings, in red all false button presses, in blue the two
specific kinds of error). The lower panels show the proportion of errors
that can be explained by stimulus-response patterns consistent with
the previously learned structure (averaged over all subjects and
mappings, in red proportion of all false button presses that can be
explained by previous structure, in blue the proportion of the two
specific kinds of error that can be explained by previous structure). The
frequency histograms were smoothed over 50 trial windows by moving
average.
doi:10.1371/journal.pone.0008973.g007

Figure 8. Facilitation effect in the absence of error trials. (A,B)
Number of trials required by each subject to learn the mappings when
disregarding all the error trials. (C,D) In the absence of error trials the
facilitation effects remain all significant (p,0.02, Wilcoxon signed rank
test).
doi:10.1371/journal.pone.0008973.g008

Structure Learning
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Hierarchical Bayesian models have been previously proposed to

account for structure learning effects in cognitive tasks, especially

in causal reasoning [23,22,24,28]. These previous studies focused

on more complicated learning problems in which the higher-level

inferences made through hierarchical Bayesian inference concern

very abstract forms of knowledge, although there have also been

studies that used Bayesian methods to explain causal inference in

perception [29]. Here we show that the framework of Bayesian

structure learning can explain facilitation effects in a simple

sensorimotor association task. This is of particular interest, because

Bayesian models have also been previously proposed to explain

associative learning [30–32]. Thus, hierarchical Bayesian models

might reconcile the idea of learning specific stimulus-response

pairs with the idea of abstraction or structure learning. Learning

specific stimulus-response pairs is instantiated by learning

particular parameters for a specific mapping (a particular

hypothesis), whereas structure learning also depends on updating

probabilities over different structures that represent more abstract

properties, such that learning a particular mapping also distributes

probability mass to ‘structural neighbours’ that represent similar

mappings.

In psychology, facilitation effects in visual discrimination

experiments have been reported previously for learning intra-

dimensional shifts compared to learning extra-dimensional shifts

[33–36]. For example, when humans are trained using a stimulus

set with a particular relevance dimension on which discriminations

should be based on (e.g. shape), they adapt more rapidly to a novel

stimulus set with the same relevance dimension (intra-dimensional

shift), whereas they adapt more slowly when facing a novel

stimulus set with a different relevance dimension (extradimen-

sional shift, e.g. lines) [34]. Facilitation for intra-dimensional shifts

has been interpreted as the ability to attend to the specific

attributes of a stimulus and to use this information for learning

novel discriminations. However, one could also interpret such

facilitation as structural learning of abstract dimensions such as

colour or shape.

In our experiments subjects could not discriminate explicit

properties of the presented stimuli. Rather they had to extract

abstract invariants or rules of the experienced stimulus-response

mappings. In a Bayesian framework ‘discovering’ such rules means

‘finding’ the best-fitting structure and hypothesis in a given set of

possible structures and hypotheses. This Bayesian account is

entirely compatible with other rule-based approaches to concept

learning [37], but a Bayesian estimator has to maintain a

probability distribution over all alternatives at all times. Therefore,

discovering a ‘new’ rule is only possible if this rule has been

considered already as a possibility in the prior. Furthermore, in

our model we restricted our analysis to structures that actually

occurred in the experiment to keep the model as simple as

possible, while still exhibiting the main effect of structure-specific

facilitation. In future it might be interesting to model more

complex sets of structures.

In this study we employed a very specific notion of stimulus-

response learning, namely learning an association between a given

sensory representation and a given set of motor responses.

However, one might argue that associative learning could also

involve more abstract or higher-order representations in the

nervous system [38]. Such higher-order associations might even

generalize and generate behaviour consistent with structural

learning. Such a broad notion of stimulus-response learning is

certainly consistent with our results, but crucially would involve a

hierarchy of abstraction levels. Such hierarchical organization is a

recurring theme in neuroscience. There have even been attempts

to identify hierarchical control structures in the brain [39]. In a

Bayesian framework hierarchical learning is naturally implement-

ed and captures human learning on multiple scales. Hierarchical

Bayesian inference might therefore provide a synthesis between

classic ‘telephone switchboard’ accounts of learning and more

‘‘insightful’’ learning based on abstraction and structure learning

[14,15].

Methods

Ethics Statement
Twenty naive subjects participated in this study and gave

written informed consent after approval of the experimental

procedures by the Ethics Committee of the Albert-Ludwig

University Freiburg. The subjects were students recruited from

the university environment.

Experimental Procedure
Subjects sat at a computer screen that displayed nine equally

sized squares arranged on a 363 grid. The stimulus consisted of

one of the squares lighting up. Subjects then had to respond by

pressing one of nine buttons that were also arranged in a 363

grid to encourage the idea of a ‘‘geometric’’ or ‘‘spatial’’

mapping (Figure 1A). If they pressed the correct button they

were informed by a high-pitch beep, otherwise there was a low-

pitch tone. Then another randomly selected stimulus lit up.

There were six possible mappings subjects had to learn: Identity,

Right Shift, Left Shift, Vertical Mirror, Horizontal Mirror, and

Random (Figure 1B). The shift mappings were circular such

that, for example, the right-most button in the right shift would

be mapped to the left-most button in the same row. There were

two groups of subjects (ten in each group) that learned the

mappings in a different order. All subjects started with the

identity mapping. Then the first group learned the above

mappings in the order: Right Shift, Left Shift, Horizontal

Mirror, Vertical Mirror, and Random. The second group had

the order of some of the mappings reversed: Left Shift, Right

Shift, Vertical Mirror, Horizontal Mirror, and Random. Each

mapping was deterministic and bijective, i.e. there was always

one response that was uniquely associated with one stimulus.

Learning of a mapping was considered successful once the

subject had managed to give the right response for each of the 9

stimuli without making any intervening mistakes. Subjects were

indicated that the mapping changed thereafter. We counted the

number of trials for successful learning of a mapping as an

indicator of performance. Subjects were instructed that each of

the nine stimulus squares corresponded to exactly one of the

nine buttons and that they should find the correct button as

quickly as possible. Subjects were not informed about possible

structures of the mappings.

Model 1: Feed-Forward Neural Network
Both the input (x) and output (y) were represented as 9-

dimensional binary vectors. The output was given by a linear

combination of the inputs, such that ~yy~Wx
I

. The weights were

updated using back-propagation, i.e. W/W{a( t
I
{y

I
)x
IT

,

where t
I

represents the target vector (the correct response).

The learning rate was set to a~0:1. The network was initialized

by training the identity mapping. Then the random mapping

and the right-shift mapping were learned. We initialized the

network with the right-shift mapping when learning the left-

shift mapping. Performance was assessed as the number of

trials needed for a performance below the error threshold

t
I
{y

I
��� ���v0:01.
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Model 2: Reinforcement Learning Model
For each stimulus x[f1,2,:::,9g and action a [f1,2,:::,9g we

defined an action value-function V (x,a). Actions were sampled

from this function according to the softmax-rule: P(ajx)~
exp (bV (x,a))P
a 0 exp (bV (x,a 0 ))

. The parameter b corresponds to the temper-

ature in physical models and regulates exploration. We set b~1:0.

If the sampled action corresponded to the correct response then a

reward of r~1 was delivered, otherwise r~0. The action value-

function was updated using the delta-rule (or Rescorla-Wagner

rule), i.e. V (x,a)/V (x,a)za(r{V (x,a)). The learning rate was

set to a~0:1. We initialized the action-value function with the

identity mapping and then learned both the random mapping and

the right-shift. We then initialized the value function with the

right-shift before learning the left-shift.

Model 3: Non-Hierarchical Bayesian Model
The hypothesis set was given by all possible mappings, which

could be represented by 9! permutations of the numbers 1 to

9 – the identity mapping, for example, would be h1~
½1,2,3,4,5,6,7,8,9�, the right-shift mapping h2~½3,1,2,6,4,5,9,7,8�,
the left-shift mapping h3~½2,3,1,5,6,4,8,9,7�, the horizontal

mirror mapping h4~½7,8,9,4,5,6,1,2,3�, and the vertical mirror

mapping h5~½3,2,1,6,5,4,9,8,7� (Fig. 1). The likelihood models

were binary such that they assigned the value 1 to all mappings that

were compatible with an observation, and zero otherwise:

P(x~i,a~jjh)~
1 if the ith digit in h is j

0 otherwise

�

When learning the random mapping and the right-shift

mapping, the prior probability was set as follows: P(h1)~0:99,

P(h2)~P(h3)~P(h4)~P(h5)~1000:
0:01

4000z9!{5
and P(hi)~

0:01

4000z9!{5
for i§6. Thus, structured mappings had a thousand

times more prior probability than random mappings. When

learning the left-shift mapping, the prior probability was

assigned mostly to the right-shift mapping such that P(h2)~

0:99 and P(h1)~P(h3)~P(h4)~P(h5)~1000:
0:01

4000z9!{5
and

P(hi)~
0:01

4000z9!{5
for i§6 as previously. This was to assess

whether learning a right-shift mapping might facilitate learning a

left-shift mapping. Actions were chosen stochastically by sampling a

hypothesis from the posterior distribution P(hjx1:ta1:t) and

executing the action suggested by the sampled hypothesis-mapping.

This allowed us to model noisy decision making. If the sampled

hypothesis corresponded to the true hypothesis learning could

proceed much faster because finding the correct answer to a

stimulus allows ruling out all other 8 possible answers to the

particular stimulus, whereas sampling the incorrect hypothesis only

allows eliminating 1 possible answer to that particular stimulus. The

prior probabilities were set manually to ensure that all hypotheses

had non-zero probability mass at the start of learning.

Model 4: Hierarchical Bayesian Model
As in the non-hierarchical model, the hypothesis set was given

by all possible mappings h. Additionally, we introduced four

structures that comprised the various hypotheses. The first

structure S1 was the ‘identity structure’ with only one member,

i.e. the identity mapping h1. The second structure S2 was the ‘shift

structure’ that contained both the right-shift and the left-shift

mapping (h2 and h3). The third structure S3 was the ‘mirror

structure’ that consisted of horizontal and vertical mirror mapping

(h4 and h5). Finally, the fourth structure S4 contained all other

mappings and is referred to as the ‘random structure’. The

likelihood model was the same as in the above model, this time

written as P(x,ajh,S). Additionally, we defined the prior

probabilities P(hjS) as P(h1jS1)~1, P(h2jS2)~P(h3jS2)~1=2,

P(h4jS3)~P(h5jS3)~1=2 and P(hijS4)~
1

9!{5
for i§6. The

posterior over hypotheses can then be computed as

P(hjS,x,a)~
P(x,ajh,S)P(hjS)P

h 0P(x,ajh 0 ,S)P(h 0 jS)

Importantly, in this hierarchical model we can also compute a

posterior over the structures:

P(Sjx,a)~

P
h P(x,ajh,S)P(hjS)P(S)P

S 0
P

h 0P(x,ajh 0 ,S 0 )P(h 0 jS 0 )P(S 0 )
:

Thus, learning, for example, the right-shift (h2) will not only

lead to a higher posterior probability of the right shift hypo-

thesis, but also of the shift structure, and therefore can facilitate

learning of the left-shift. When learning the random mapp-

ing and the right-shift mapping, the prior probability over

structures was set as follows: P(S1)~0:99, P(S2)~

P(S3)~2000:
0:01

4000z9!{5
and P(S4)~

0:01

4000z9!{5
. Thus,

structured mappings had a thousand times more prior proba-

bility than random mappings. When learning the left-shift

mapping, the prior probability of the shift structure was elevated.

We set P(S2)~0:99, P(S1)~P(S3)~2000:
0:01

4000z9!{5
and

P(S4)~
0:01

4000z9!{5
as previously. Actions were again sampled

from the posterior P(hjx1:ta1:t), that can be computed as

P(hjx1:ta1:t)~
P

S P(hjS,x1:ta1:t)P(Sjx1:ta1:t).
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