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Abstract— We study target reaching tasks of redundant
anthropomorphic manipulators under the premise of minimal
energy consumption and compliance during motion. We formu-
late this motor control problem in the framework of Optimal
Feedback Control (OFC) by introducing a specific cost function
that accounts for the physical constraints of the controlled plant.
Using an approximative computational optimal control method
we can optimally control a high-dimensional anthropomorphic
robot without having to specify an explicit inverse kinematics,
inverse dynamics or feedback control law. We highlight the
benefits of this biologically plausible motor control strategy
over traditional (open loop) optimal controllers: The presented
approach proves to be significantly more energy efficient and
compliant, while being accurate with respect to the task at
hand. These properties are crucial for the control of mobile
anthropomorphic robots, that are designed to interact safely in
a human environment. To the best of our knowledge this is the
first OFC implementation on a high-dimensional (redundant)
manipulator.

I. INTRODUCTION

We address the problem related to control of movement
in large degree of freedom (DoF) anthropomorphic manip-
ulators, with specific emphasis on (target) reaching tasks.
This is challenging mainly due to the large redundancies
that such systems exhibit. For example, a controller has to
make a choice between many different possible trajectories
(kinematics) and a multitude of applicable motor commands
(dynamics) for achieving a particular task. How do we
resolve this redundancy?

Optimal control theory [1], [2], [7], [14] answers this
question by postulating that a particular choice is made
because it is the optimal solution to the task. Most optimal
motor control models hereby have focused on open loop
optimisation in which the sequence of motor commands
or the kinematic trajectory itself is directly optimised with
respect to some cost function. The solution to an open loop
problem gives us an optimal control trajectory, which can
usually be obtained by solving a two point boundary differ-
ence/differential equation derived by applying Pontryagin’s
minimum principle [14]. Therefore trajectory planning and
execution steps are separated and errors during execution are
compensated for by using a feedback component (e.g., PID
controller). However, the required corrections are not taken
into account in the optimisation process.
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Fig. 1. The antropomorphic manipulator (Barrett WAM) used for our
experiments. (A): 4 DoF setup; (B): 7 DoF setup (with wrist attached).

A suggested alternative to open loop models are closed
loop optimisation models. The solution to a closed loop
problem is an optimal feedback controller (OFC), i.e. a
function mapping from the state to the optimal control
value1. Thus, in contrast to classical control, calculation of
the trajectory (planning) and the control signal (execution)
is handled in one go.

Recently OFC has found large attention in the study of
biological motor control [16] where it has shown to be a
powerful theory for interpreting human motor behaviour [8],
[13]. A key property of such OFC, that typically minimise
for task error and energy consumption, is that errors are
only corrected by the controller if they adversely affect the
task performance, otherwise they are neglected (minimum
intervention principle [17]). Therefore redundant degrees of
freedom, often a nuisance for kinematic path planning, in
OFC are actually exploited in order to decrease the cost.
This is an important property especially for systems that
demand low energy consumption and compliant motion, such
as mobile humanoid robots interacting safely in a human en-
vironment. Furthermore OFC solutions, unlike classic robot
controllers, neither require a separate inverse kinematics nor
inverse dynamics computations nor the determination of the
feedback control law.

Despite the appeal of closed loop optimal control, its
application on realistic high dimensional and non-linear
systems2 is problematic: It is very complicated to solve
a closed loop problem since the information represented
by the optimal value function is essentially equal to the
information obtained by solving a two point boundary or-

1Closed loop models are often referred as global methods since each point
in the state space is considered.

2If the plant dynamics is linear and the cost function is quadratic the
optimisation problem is convex and can be solved analytically.
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dinary differential equation from each point in state space.
Global solutions could be found in theory by applying
dynamic programming methods [1] that are based on the
Hamilton-Jacobi-Bellman equations, which in their basic
form rely on a discretisation of the state and action space,
an approach that is not viable for large DoF systems (curse
of dimensionality). Approximative optimal control methods
like Differential Dynamic Programming (DDP) [2], [6] and
the iterative Linear Quadratic Gaussian (ILQG) [18] can be
employed to overcome computational intractability. These
methods iteratively compute an optimal trajectory together
with a locally valid feedback law and therefore are not
directly subject to the curse of dimensionality. Previous work
largely has focused on the theoretical aspects in idealised
simulated scenarios [8], [15], [11] whereas we demonstrate
that OFC indeed is a practical approach for controlling real
robotic systems [5].

In this paper we develop an optimal feedback controller
for a high-dimensional anthropomorphic manipulator. We
investigate finite-time target reaching tasks under the premise
of minimal energy consumption and compliance during mo-
tion as it is required for safe interaction with the robot.
After a brief explanation of OFC and approximative methods
in Section II we introduce an optimisation criterion that
allows us to incorporate the required physical constraints of
our plant into the optimisation process and we formulate a
forward dynamics function that avoids discontinuities arising
from joint friction in the robot (Section III). In Section IV
we apply the local OFC law to the Barrett WAM manipulator
and we highlight the benefits of this motor control strategy
for anthropomorphic robots, that are designed to interact in
a human environment. To the best of our knowledge this
is the first documented OFC investigation on real (high-
dimensional) hardware.

II. OPTIMAL FEEDBACK CONTROL

Let xt denote the state of a plant and ut the applied control
signal (i.e., joint torque) at time t. The state consists of the
joint angles q and velocities q̇ of the robot. We can express
the system dynamics in deterministic form as

dx = f(x,u)dt. (1)

OFC has been formalised for stochastic dynamics with partial
observability [9]. However we will ignore stochasticity in
this work as we would require a system noise and estimation
noise model of the real hardware.

We formally specify the problem of carrying out a (reach-
ing) movement as follows: Given an initial state x0 at time
t = 0, we seek a control sequence ut such that the system’s
state is x∗ at time t = T . Optimal control theory approaches
the problem by first specifying a cost function which is
composed of (i) some evaluation h(xT ) of the final state,
usually penalising deviations from the desired state x∗, and
(ii) the accumulated cost or running cost c(t,x,u) of sending
a control signal u at time t in state x, typically penalising
large motor commands. Introducing a policy π(t,x) for

selecting ut, we can write the expected cost of following
that policy from time t as [18]

vπ(t,x(t)) =
〈
h(xT ) +

∫ T

t

c(s,xs,π(s,xs))ds
〉
. (2)

In OFC one then aims to find the policy π that minimises
the total expected cost vπ(0,x0).

The choice of the cost function determines the desired
behaviour of the system and encodes the task. In the past,
many performance criteria have been proposed (e.g., [3],
[4], [19]). Inspired by the study of biological systems where
metabolic cost is crucial, the minimum energy criterion [12]
is also a very appealing strategy for mobile robots since
battery life is limited. Furthermore minimum energy implies
smooth trajectories, reduced stress on the actuators, and
joint compliance through low corrective gains, which is also
desired in our application.

A. Iterative Linear Quadratic Gaussian (ILQG)

The fundamental idea behind ILQG is that, when the
dynamics process is non-linear and costs are non-quadratic,
one can still apply the LQG solution approximately around
a nominal trajectory and use local solutions to iteratively
improve the nominal solution.

We study reaching movements of a manipulator as a finite
time horizon problems of length K = kΔt seconds. Typical
values are k = 100 discretisation steps with a simulation
rate of Δt = 0.01. We assume that we have identified an
accurate forward dynamics model f(x,u) of our plant. We
define a discrete cost function v encoding for a task, where
the manipulator has to move and stop at the target using a
minimal amount of energy [18]:

v = wp | r(qK) − rtar | 2 + wv | q̇K | 2 +

Δt
K∑

k=0

we |uk | 2︸ ︷︷ ︸
=vk

. (3)

The factors for the target position accuracy (wp), the stop-
ping condition (wv), and the energy term3 (we) weight the
importance of each component. Further r(q) denotes the
forward kinematics and rtar the task space coordinates of
our reaching target.

The ILQG algortihm starts with a time-discretised initial
guess (e.g., gravity compensation, or zero sequence) of a
control sequence and then iteratively improves it w.r.t. the
performance criteria in v (eq. 3). From the initial control
sequence ūi at the ith-iteration, the corresponding state
sequence x̄i is retrieved using the deterministic forward
dynamics f with a standard Euler integration x̄i

k+1 = x̄i
k +

Δt f(x̄i
k, ūi

k). In a next step the discretised dynamics (eq. 1)
are linearly approximated as

δxk+1 =
(
I+Δt

∂f
∂x

∣∣∣
x̄k

)
δxk + Δt

∂f
∂u

∣∣∣
ūk

δuk. (4)

3We approximate energy with joint torque consumption, and we ignore
the efficiency factors of the motors.



Similarly one can derive a quadratic approximation of the
cost function around x̄i

k and ūi
k:

costk = qk + δxT
k qk +

1
2
δxT

k Qkδxk + (5)

δuT
k rk +

1
2
δuT

k Rkδuk + δuT
k Pkδxk

where

qk = Δt vk; qk = Δt
∂vk

∂x

∣∣∣
x̄k

(6)

Qk = Δt ∂2vk

∂x∂x

∣∣∣
x̄k,ūk

; Pk = Δt
∂2vk

∂u∂x

∣∣∣
x̄k,ūk

rk = Δt∂vk

∂u

∣∣∣
ūk

; Rk = Δt
∂2vk

∂u∂u

∣∣∣
ūk

.

Both approximations are formulated as deviations δxi
k =

xi
k− x̄i

k and δui
k = ui

k− ūi
k of the current optimal trajectory

and therefore form a “local” LQG problem. This linear
quadratic problem can be solved efficiently via a modified
Ricatti-like set of equations that yields an affine control
law πk(δx) = lk + Lkδxk. This control law has a special
form: since it is defined in terms of deviations of a nominal
trajectory and since it needs to be implemented iteratively,
it consists of an open loop component lk and a feedback-
component Lkδxk. The actual optimisation in ILQG supports
constraints for the control variable u, such as lower and
upper bounds. After the optimal control signal correction
δūi has been obtained, it can be used to improve the current
optimal control sequence for the next iteration using ūi+1

k =
ūi

k + δūi. At last ūi+1
k is applied to the system dynamics

(eq. 1) and the new total cost along the along the trajectory
is computed. The algorithm stops once the cost v cannot be
significantly decreased anymore. After convergence, ILQG
returns an optimal control sequence ū and a corresponding
state sequence x̄ (i.e., trajectory). Along with the open loop
parameters x̄ and ū, ILQG produces a feedback matrix L
which may serve as optimal feedback gains for correcting
local deviations from the desired trajectory on the plant (Fig.
2). The control law for each time step k is defined as,

uplant
k = ūk + δuk (7)

δuk = Lk · (xk − x̄k) , (8)

where xk represents the real plant position and x̄k the desired
position at time k.

ILQG u plant  
(WAM)dynamics model +

feedback
controller

L, x

u

xcost function
(incl. target)

δ

-

- u +- uδ

Fig. 2. The OFC scheme using ILQG.

For the control of robotic manipulators ILQG has several
desirable properties: (i) ILQG resolves kinematic redundan-
cies automatically, i.e., no explicit inverse kinematics method
is required. (ii) It produces a feedforward control sequence

with corresponding optimal feedback control law. As we see
later this allows us to achieve highly compliant movement
plans that are still accurate w.r.t. the task at hand. (iii) We
can specify a specific motion task in an “intuitive” high level
formulation in the cost function.

At this point one should note that there is no guar-
antee that ILQG will converge to a global minimum. In
fact experience from practice shows that the initial control
sequence often affects the final outcome of the algorithm.
From a computational perspective the dynamics linearisation
steps in the ILQG algorithm loop prove to be the computa-
tional bottleneck. This process requires the partial derivatives
∂f(x,u)/∂x and ∂f(x,u)/∂u, which are computed, in a
generally applicable case4, using finite differences.

III. ROBOT MODEL AND CONTROL

In this paper we use the WAM arm (Barrett Technology
Inc.) (Figure 1) as an implementation platform. The WAM is
a cable driven 7 DoF anthropomorphic manipulator (4 DoF
without wrist), with a reach of about 1m and a payload of
4kg. The platform is well suited for implementing dynamics
model based control (like OFC) since the inertial parameters
are publicly available and motor torques can be directly
commanded to the WAM. On the sensing side the platform
has joint position encoders but offers no joint torque or other
external sensors.

A. Forward dynamics the cost function

We model the non-linear dynamics of our plant using
standard equations of motion where the joint torques τ are
given by

τ (q, q̇, q̈) = M(q)q̈ + C(q, q̇)q̇ + b(q̇) + g(q). (9)

As before q and q̇ are the joint angles and joint velocities
respectively; M(q) is the N -dimensional symmetric joint
space inertia matrix, C(q, q̇) accounts for Coriolis and
centripetal effects, b(q̇) describes the joint friction, and g(q)
defines the gravity loading depending on the joint angles q
of the manipulator. All inertial parameters are provided by
the robot manufacturer.

B. Avoiding discontinuities in the dynamics

The WAM suffers from significant frictional joint torques
b(q̇), which had to be estimated separately. Joint friction is
usually modelled to consist of a static5 and kinetic Coulomb
component as well as of a viscous friction component
(Fig. 3). The Coulomb friction model is discontinuous and
therefore has no derivatives defined at q̇ = 0, which is
problematic because internally ILQG relies on derivatives to
improve the control law. Furthermore, very steep gradients
(as occurring in step-like functions) can sometimes have a
bad impact on the convergence speed of the algorithm. We
overcome this problem in practice by ignoring the static
Coulomb friction and by approximating the kinetic Coulomb

4In this work we also follow this approach
5Also called “stiction”.
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Fig. 3. Approximative continuous friction model. Solid black line rep-
resents the theoretical discontinuos Coulomb friction. For an (example)
steepness parameter of s = 200 the derivatives at the start condition (q̇ = 0)
become too large and ILQG diverges whereas for s = 20 it successfully
converges.

and viscous friction in each joint with the following smooth
and continuous sigmoid function

b(q̇) = bc arctan (sq̇)
2
π

+ Bq̇, (10)

where s indicates the “steepness” of the fitted arctan func-
tion (Fig. 3), bC is the kinetic Coulomb friction, and B is
the viscous friction coefficient. We heuristically identified
the steepness parameter as s = 20 (for all joints) such that
it led to overall stable ILQG convergence while providing
sufficient modelling accuracy.

We then used the constant angular velocity motion test
[10] as an identification method for the viscous friction
coefficient and the kinetic Coulomb friction. When a small
step input torque τ ∗(i) is applied to the target joint i
while keeping the other joints fixed, q̇i converges to some
constant angular velocity as t → ∞ by the effect of the
damping torque. By executing the test motions ten times
with various values of τ ∗(i) for each joint, B and bC can
be easily estimated by a least-square method. Table I shows
the obtained results for all joints.

Joint i=1 i=2 i=3 i=4 i=5 i=6 i=7
B(i) 1.142 0.946 0.309 0.255 0.025 0.039 0.004
bc(i) 2.516 2.581 2.038 0.956 0.323 0.315 0.066

TABLE I

ESTIMATED JOINT FRICTION PARAMETERS FOR THE WAM.

Since we are commanding joint torques (τ = u) the
deterministic forward dynamics used in ILQG takes the form

q̈ = M(q)−1 (u − C(q, q̇)q̇ − g(q) − b(q̇)) . (11)

C. Incorporating real world constraints into OFC

The model based control of real hardware must obey
several physical constraints, which somehow need to be
incorporated into the OFC framework. These correspond
to the physical boundaries of the manipulator, namely the
maximally applicable motor torques (umin,umax), the joint
angle limits (qmin,qmax), and the maximally executable
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Fig. 4. Comparison of ILQG results obtained without (left) and with (right)
physical constraint terms P (q) and V (q̇). The unconstrained solution
violates the physical limits which would lead to a self collision applied
to the WAM (top row of simulation screenshots).

joint velocities (q̇min, q̇max). ILQG handles the control con-
straints during optimisation by enforcing control boundaries
on ū and by modifying the feedback gain matrix Lk (i.e.,
setting Lk to zero) whenever an element of the control
sequence lies on the constraint boundary. Applied to the
hardware however we found that control constraints are
rarely violated whereas state constraints are much more
critical (Fig. 4) and ILQG does not handle those constrains in
any form. We therefore propose to incorporate the joint angle
and joint velocity boundaries as optimisation constraints into
the running cost in (3) as

v = wp | r(qK) − rtar | 2 + wv | q̇K | 2 +

Δt
K∑

k=0

(
we |uk | 2 + P (qk) + V (q̇k)

)
(12)

P (q) = wpb

4∑
i=1

(
[qi − qmax

i ]2+ + [qmin
i − qi]2+

)
(13)

V (q̇) = wvb

4∑
i=1

(
[q̇i − q̇max

i ]2+ + [q̇min
i − q̇i]2+

)
.(14)

For the joint angle boundaries (wpb), and the joint velocity
boundaries (wvb) we use following notational convention
[x]+ = max(0, x) given that for each joint (qmin

i < 0 <
qmax
i ) and (q̇min

i < 0 < q̇max
i ).

Another issue that needs to be addressed is the correct
initialisation of the robot’s joint torque state. Before starting
the optimal reaching movement the robot is assumed to be in
a stationary state, which is achieved by applying the torque
sequence uinit. For the WAM the gravity compensation is
known and we therefore set uinit = g(q0). At reaching start
time k = 0 the torque sequences of the plant and the ILQG



result should be equal, i.e., g(q0) = ū0. However there is no
way to ”tell” ILQG what the initial torques should be at time
k = 0 and therefore a ”torque jump” will be commanded to
the plant. A similar effect arises at the end of the motion
(k = K) where we usually transfer from reaching back to
gravity compensation and it would be desirable that g(qK) =
ūK . Such torque transition errors must be avoided since
they destabilise the plant and produce high stresses on the
actuators, which contradicts the energy efficient control law
that we want to achieve. Therefore an additional constraint is
required in order to avoid excessively large motor jumps at
the beginning and end of the reaching. In theory one can
partially avoid that problem by modelling the underlying
motor dynamics that define the maximal change in motor
control signals. However this approach blows up the state
space by additional N states, which in consequence increases
the computational load on ILQG. We solve this problem
alternatively by (i) using the gravity compensation torques
g(q0) as initial torque sequence and by (ii) introducing an
additional “soft-start” and “soft-stop” constraint into the cost
function. We extend our cost function v by another time-
dependent term in the running cost

v∗ = v + Δt

K∑
k=0

w∗
v | q̇k | 2 (15)

w∗
v =

⎧⎨
⎩

1 − k
Ks

, if k < Ks

1 − K−k
Ks

, if k > (K − Ks)
0 , otherwise

.

Therefore the reaching has now became closer to a hold-
reach-hold task, where Ks determines the transition smooth-
ness, which is formulated in terms of joint angle velocities,
irrespective of the current arm position at at start and end.

IV. RESULTS

In this section we discuss the results from controlling the
WAM using the proposed (local) optimal feedback controller.
We study two setups: First we use the 4 DoF setup to
show the basic concepts and compare the results to other
trajectory planners in terms of task achievement, compliance
and energy consumption. The second setup contains all
7 DoF and here we will highlight the scalability of our
approach and we present a set of control applications.

A. OFC with 4 DoF

We study movements for the fixed motion duration of
1.6 seconds, which we discretise into K = 800 steps (Δt
= 0.002 sec) corresponding to the robot’s operation rate of
500Hz. The manipulator starts at an initial position q0 and
reaches towards several targets t, defined in end effector task
space coordinates (x, y, z) in meters. During movement we
wish to minimise the proposed cost function (15).

We set the arm’s start position as q0 =
(0,−0.89, 0, 2.0)T rad and 3 reference targets (left, middle,
right): tleft = (0.55, 0.3, 0.25), tcenter = (0.55, 0, 0.25),
tright = (0.55,−0.3, 0.25). These targets represent a
reasonably far distance (center 0.73m; left/right 0.79m)

for a reaching time of 1.6 sec. We used following cost
parameters: wp = 50000, wv = 5000, we = 1, wpb = 50,
wvb = 100, Ks = 10. Next we found the optimal solutions
using ILQG for the three targets. Using the gravity
compensation as initial trajectory, the algorithm converged
after following number of iterations: itercenter = 63,
iterleft = 89 ,iterright = 68. The ILQG results are applied
to the WAM following the control law defined in (8). The
matrix Lk = [LP LD]k is the 4 × 8 time-dependent locally
valid control law that contains the optimal PD gains for
each time step k. It has been shown previously [11] that
these gains follow the so called minimum intervention
principle [17]: As can be seen in the center panel of
Fig. 5, on the example of tcenter, the L gains take into
account the nature of the specified task in the cost function.
Therefore the gains are very low up to about 500 time steps
and then grow towards the end of the motion where task
accuracy and stability are more important6. This trade-off
between energy preservation and reaching task achievement
is present in all joints. Notably the L-matrix is diagonally
dominant with an additional coupling between joints 1 and
joint 3. This coupling appears due to the redundancy those
joint have for the task of reaching to the center targets,
e.g., perturbations in joint 1 can partly be corrected by
joint 3 and vice versa. A comparison between the desired
optimal trajectories (dashed lines in Fig. 5) and the feedback
corrected trajectories on the plant (solid lines) indicate that
the modelled forward dynamics is fairly accurate, especially
for joint 2 that exhibits the largest joint torques. We can
observe effects of “unmodelled dynamics”, which can be
attributed to the errors in the friction estimation (see section
III-B).

As mentioned in the introduction in our OFC control strat-
egy the primary aim is task achievement in target reaching
and the energy preservation during control, whereas the exact
trajectory tracking here is no performance criterion. As we
show next these properties allow us (i) to use less energy
than other (open loop) optimal control algorithms, and (ii)
to be compliant during motion.

We compare the ILQG results against an open loop
optimiser following the minimum jerk optimisation criterion
[3]. We use the same start and end position as before and
the optimisation gives us a optimal kinematic trajectory x∗,
which must be tracked using a (typically) hand tuned PD
feedback control law

uplant
k = P · (q∗

k − qk) + D · (q̇∗
k − q̇k) . (16)

We used two sets of PD gains: (a) The high gain factory
default values of the Barrett WAM controller: P = 2000,
D = 500. (b) The maximal diagonal values of the ILQG
feedback gain matrix L : P = max(diag(LP )), D =
max(diag(LD)).

For a better comparison with the ILQG control paradigm
we also ran the minimum jerk results with a feed-forward

6Generally the L-gains are significantly smaller than the WAM factory-
default PD gains which are P = 2000 and D = 500 for each joint.
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Fig. 5. Results of the ILQG control law (eq. 8) applied to the WAM with 4 DOF for a reaching to the center target tcenter . The dashed lines represent
the optimal desired trajectories produced by ILQG. and the solid lines show the 10 trajectories recorded from the WAM. The shaded areas depict the
feedback gain matrix (L), where brighter shadings indicate the position gains (P) and the darker areas depict the velocity-gains (D).

torque sequence that we computed using the inverse dynam-
ics

uplant
k = τk(q∗

k, q̇∗
k, q̈∗

k) +
P · (q∗

k − qk) + D · (q̇∗
k − q̇k) . (17)

As before we used: (c) the standard WAM gains and (d)
max(L). Figure 6 summarises the results.

As expected, in terms of accuracy the high gain feedfor-
ward minimum jerk trial (c) is the most accurate. However
it achieves this performance with the price of a fairly high
energy consumption, i.e., 25% higher than ILQG. Due to the
high corrective gains its compliance is reduced making the
robot much more destructive in the case of unexpected col-
lisions. In summary ILQG offers the best trade-off between
end-point accuracy and energy consumption. The ILQG re-
sults for all targets are accumulated in Table II. The reaching
produced by ILQG is very compliant allowing an interaction
at all times with the robot (Fig. 7 and accompanying video).

TABLE II

ILQG RESULTS (MEAN ± STD OVER 10 TRIALS) ONF 4 DOF WAM FOR

3 REFERENCE TARGETS.

ILQG Euclidean target error [mm] Energy [N · m]
tcenter 7.576 ± 0.148 8.637 · 103 ± 0.015 · 103

tleft 9.707 ± 0.233 9.746 · 103 ± 0.020 · 103

tright 9.213 ± 0.273 8.994 · 103 ± 0.031 · 103
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Fig. 6. Comparison of min jerk (condtions (1)-(4) and ILQG (5) - Results
are averaged over 10 reaches to the center target (tcenter). Left: Euclidean
distance (error) between target and end-point. Right: “Energy” consumption
computed as sum of all torques in all joints over the entire trajectory:∑4

i=1

∑K

k=1
|uplant

k
(i)|.

B. Scaling to 7 DoF

In this section we demonstrate the scaling and redundancy
resolution abilities of ILQG. We demonstrate results on two
types of reaching tasks:

1) Task space reaching without orientation: We repeated
the reaching experiment from the section with the 7 dof
setup. Initial position, targets, reaching time and cost function
parameters were the same as before. Unlike before we now
have 4 redundant degrees of freedom, since we only look
at (x, y, z) coordinates and ignore the end-effector orien-
tation. ILQG successfully converges after itercenter = 74,
iterleft = 80, iterright = 71 iterations and resolves the
kinematic redundancies. As shown in Table III the reaching
performance is comparable to the 4 DoF case. Notably the
7 DoF setup has a larger energy consumption as the 4 DoF



Fig. 7. Demonstration of the compliance of ILQG motion. Top row: The
reaching with ILQG towards the center of the black bucket. The obstacle
(balloon) cannot get damaged by the robot, due to the compliant motion of
ILQG. In contrast the minimum jerk planning using standard gains is not
compliant and therefore highly destructive.

arm. We attribute this to the higher weight of the additional
motors and gearing (+2kg) that are the added at the last 3
joints.

TABLE III

ILQG RESULTS (MEAN ± STD OVER 10 TRIALS) ON 7 DOF WAM FOR 3

REFERENCE TARGETS.

ILQG Euclidean target error [mm] Energy [N · m]
tcenter 5.494 ± 0.150 16.254 · 103 ± 0.023 · 103

tleft 6.891 ± 0.175 17.690 · 103 ± 0.017 · 103

tright 9.210 ± 0.156 16.272 · 103 ± 0.021 · 103

2) Task space reaching with orientation: Many manipu-
lator tasks, for example pick and place tasks, require a spec-
ification of the end-effector orientation. Therefore instead of
defining the reaching target in task space coordinates (x, y, z)
only (eq. 15), we additionally specify the desired end-effector
rotation as yaw, pitch, roll (y, p, r). We set two reaching
tasks towards tcenter with different end-effector orientations,
one pointing horizontally to the front and the other pointing
vertically down. The 4 × 4 transformation matrices of the
targets are

tfront =

(
0 0 1.0 0.45
0 1.0 0 0

−1.0 0 0 0.25
0 0 0 1

)

tdown =

( −1.0 0 0 0.45
0 1.0 0 0
0 0 −1.0 0.25
0 0 0 1

)
.

Applied to the WAM (Fig. 8), it successfully reached the
targets with high accuracy in position and orientation as can

Fig. 8. ILQG reaching of 7 DoF WAM for targets with two different end
point orientations. Top row: tfront; bottom row: tdown

be seen from the WAM’s end-effector transformation matrix
of the two targets (averaged over 10 trials).

r(qfront
K ) =

(
0.0032 0.0020 1.0000 0.4585

−0.0005 1.0000 −0.0020 −0.0003
−1.0000 −0.0005 0.0032 0.2631

0 0 0 1.0

)

r(qdown
K ) =

( −1.0000 −0.0052 0.0017 0.4448
−0.0052 1.0000 −0.0028 −0.0018
−0.0017 −0.0028 −1.0000 0.2502

0 0 0 1

)
.

Table IV summarises the performance over 10 trials.

TABLE IV

ILQG RESULTS (MEAN ± STD OVER 10 TRIALS) ON 7 DOF WAM FOR 2

REFERENCE TARGETS WITH ORIENTATION CONSTRAINTS .

ILQG tfront

Euclidean target error [mm] 14.672 ± 0.501
Yaw error [rad] 0.0024 ± 0.0011
Pitch error [rad] 0.0014 ± 0.0011
Roll error [rad] 0.0013 ± 0.0005
Energy [N · m] 12.485 · 103 ± 0.0431 · 103

ILQG tdown

Euclidean target error [mm] 5.538 ± 0.329
Yaw error [rad] 0.0035 ± 0.0027
Pitch error [rad] 0.0019 ± 0.0012
Roll error [rad] 0.0064 ± 0.0053
Energy [N · m] 13.271 · 103 ± 0.677 · 103

C. Reducing the computational costs of ILQG

For any motion control algorithm, real-time planning is
desireable and computational costs therefore play an impor-
tant role. Given the high operation rate of the WAM (500
Hz), we face serious limitations due to the computational
efficiency of iterative methods. These scale linearly with the
number of time steps, linearly with the number of iterations
and in the number of input dimensions x = (q; q̇) and u
(i.e., 3N for an N DoF robot).

Typical ILQG simulations produce accurate optimisation
results with dt = 0.01. Therefore when calculating the ILQG
control law we do this initially with dt = 0.01 to quickly
obtain an optimal control sequence ū of length n = 160. We



then subsample this optimal torque sequence to get longer
control sequence ūext of length n = 800. This sequence
serves as the new initial control sequence of ILQG with dt =
0.005 and since the sequence is located near the optimal
solution already, ILQG converges after only 2 to 4 iterations
on average.

In order to reduce the finite differences calculations one
can employ analytic derivatives of the dynamics function.
We have shown previously that such approaches can speed
up the ILQG computations by a factor 10 or more [11]. An-
other practical speed-up approach limits the required number
of iterations by remembering previously calculated optimal
trajectories, which then can be used as an “initialisation
library” near an expected optimum, performed for example
with a nearest neighbour search. A similar approach has
proved to create a globally optimal behaviour in a real-
time simulated swimmer [15]. Applying the above mentioned
speed-up methods we were able to perform complete ILQG
computations for the 7 DoF WAM in the range of 2 to
5 seconds on a regular Notebook (Intel Core 2 1.8GHz).
Notably these solutions were obtained using finite differences
instead of analytic derivatives.

V. CONCLUSION & OUTLOOK

In this paper we proposed to use OFC for the control
of anthropomorphic robots. We developed a locally valid
optimal feedback controller for the WAM manipulator, which
we achieved by incorporating the physical constraints of the
robot into the performance index of the optimal controller.
We further elaborated on the problems and solutions of
discontinuous dynamics as they occur on real hardware. We
successfully tested our control method to the manipulator and
demonstrated the practical benefits of this control strategy,
that unifies motion planning, redundancy resolution and
compliant control as a result of a single algorithm.

Like for any model-based control method, the dynamics
model is the bottleneck in terms of task achievement and
accuracy. Even though we sacrificed model accuracy to
achieve numerical stability, we still are able to get reasonable
reaching accuracy that can be thought to be sufficient for
most daily life tasks.

Whereas here we studied reaching tasks, the OFC is
easily extendable to more complex tasks such as throwing
and hitting (see accompanying video), via point tasks, or
walking [5]. We are currently working on extensions of
OFC for the control of redundantly actuated (i.e., variable
impedance) manipulators under the assumption of stochastic
plant dynamics.

REFERENCES

[1] D. P. Bertsekas. Dynamic programming and optimal control. Athena
Scientific, Belmont, Mass., 1995.

[2] P. Dyer and S. McReynolds. The Computational Theory of Optimal
Control. Academic Press, New York, 1970.

[3] T. Flash and N. Hogan. The coordination of arm movements: an ex-
perimentally confirmed mathematical model. Journal of Neuroscience,
5:1688–1703, 1985.

[4] C. M. Harris and D. M. Wolpert. Signal-dependent noise determines
motor planning. Nature, 394:780–784, 1998.

[5] Morimoto J. and Atkeson C. Minimax differential dynamic program-
ming: An application to robust biped walking. In Advances in Neural
Information Processing Systems, 15, 2002.

[6] D. H. Jacobson and D. Q. Mayne. Differential Dynamic Programming.
Elsevier, New York, 1970.

[7] D. E. Kirk. Optimal Control Theory: An Introduction. Prentice-Hall,
1970.

[8] W. Li. Optimal Control for Biological Movement Systems. PhD
dissertation, University of California, San Diego, 2006.

[9] W. Li and E. Todorov. Iterative linearization methods for approxi-
mately optimal control and estimation of non-linear stochastic system.
International Journal of Control, 80(9):14391453, September 2007.

[10] H. Mayeda, K. Osuka, and Kangawa A. A new identification method
for serial manipulator arms. Proc. 9th IFAC World Congress, pages
2429–2434, 1984.

[11] D. Mitrovic, S. Klanke, and S. Vijayakumar. Optimal control with
adaptive internal dynamics models. In In proceedings of the 5th
International Conference on Informatics in Control, Automation and
Robotics (ICINCO), Madeira, Portugal, 2008.

[12] W. L. Nelson. Physical principles for economies of skilled movements.
Biological Cybernetics, 46:135147, 1983.

[13] S. H. Scott. Optimal feedback control and the neural basis of volitional
motor control. Nature Reviews Neuroscience, 5:532–546, 2004.

[14] R. F. Stengel. Optimal control and estimation. Dover Publications,
New York, 1994.

[15] Y. Tassa, T. Erez, and W. D. Smart. Receding horizon differential
dynamic programming. In Advances in Neural Information Processing
Systems, 2007.

[16] E. Todorov. Optimality principles in sensorimotor control. Nature
Neuroscience, 7(9):907–915, 2004.

[17] E. Todorov and M. Jordan. A minimal intervention principle for
coordinated movement. In Advances in Neural Information Processing
Systems, number 15, pages 27–34. MIT Press, 2003.

[18] E. Todorov and W. Li. A generalized iterative LQG method for locally-
optimal feedback control of constrained nonlinear stochastic systems.
In Proc. of the American Control Conference, 2005.

[19] Y. Uno, M. Kawato, and R. Suzuki. Formation and control of optimal
trajectories in human multijoint arm movements: minimum torque-
change model. Biological Cybernetics, 61:89–101, 1989.




