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SUMMARY

Many theories of cerebellar function assume
that long-term depression (LTD) of parallel fiber
(PF) synapses enables Purkinje cells to learn to
recognize PF activity patterns. We have studied
the LTD-based recognition of PF patterns in
a biophysically realistic Purkinje-cell model.
With simple-spike firing as observed in vivo,
the presentation of a pattern resulted in a burst
of spikes followed by a pause. Surprisingly, the
best criterion to distinguish learned patterns
was the duration of this pause. Moreover, our
simulations predicted that learned patterns
elicited shorter pauses, thus increasing
Purkinje-cell output. We tested this prediction
in Purkinje-cell recordings both in vitro and in
vivo. In vitro, we found a shortening of pauses
when decreasing the number of active PFs or
after inducing LTD. In vivo, we observed longer
pauses in LTD-deficient mice. Our results
suggest a novel form of neural coding in the
cerebellar cortex.

INTRODUCTION

A fundamental assumption in neuroscience is that activity-

dependent synaptic modifications represent a mechanism

for storing information in the brain. One example of synap-

tic plasticity that has been implicated in learning and has

received much attention is long-term depression (LTD)

of synapses between parallel fibers (PFs) and Purkinje

cells in the cerebellar cortex. PF LTD can be induced by

repeated coincident PF and climbing fiber (CF) input to

the Purkinje cell (Ito, 2001; Ito et al., 1982; Sakurai,

1987). Thus, a PF activity pattern that is paired repeatedly
with CF input will lead to LTD of the PF synapses activated

by the pattern. According to the classical view, this results

in reduced simple-spike firing in the Purkinje cell when the

PF activity pattern is presented again and thus leads to

reduced inhibitory input to neurons in the deep cerebellar

nuclei (DCN), increased output from the cerebellum, and

execution of a movement (Boyden et al., 2006; Hansel

et al., 2001; Ito, 1984; Ito, 2001; Jorntell and Hansel,

2006; Koekkoek et al., 2003; Mauk et al., 1998; Ohyama

et al., 2003).

The hypothesis that PF LTD implements motor learning

dates back to Marr and Albus’s theoretical work (Albus,

1971; Marr, 1969), published long before Ito and collabo-

rators found experimental evidence for the existence of

LTD (Ito et al., 1982). This hypothesis has become known

as the Marr-Albus theory (Ito, 1984) and forms the basis of

many theoretical studies of cerebellar learning (for exam-

ple, Gilbert, 1974; Medina et al., 2000; Schweighofer and

Ferriol, 2000). All of these studies use very simplified

Purkinje-cell models. In real Purkinje cells, the recognition

of PF patterns is influenced by many factors, including the

spatial distribution of inputs across the dendritic tree, the

activation of voltage-gated ion channels, their modulation

by cytoplasmic Ca2+ elevations, and the rate of simple-

spike firing. Purkinje cells in vivo receive a background

level of PF activity, which interact with intrinsic pacemaker

currents to generate simple-spike firing at frequencies

usually between 10 and 100 Hz (Armstrong and Rawson,

1979; Goossens et al., 2001). Thus, the weakening of the

PF synapses by LTD must affect Purkinje-cell output in

the context of continuous spiking. This raises the question

of which features of the Purkinje-cell spike train could be

used for recognizing learned PF patterns.

We studied the LTD-based recognition of PF activity

patterns by analyzing simple-spike responses in a multi-

compartmental Purkinje-cell model with active dendrites

and soma (De Schutter and Bower, 1994a; De Schutter

and Bower, 1994b). We found that the best criterion for

the recognition of patterns that had been learned by LTD
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was the duration of the silent period after the pattern pre-

sentation, with learned patterns resulting in shorter

pauses. These modeling predictions were confirmed

with Purkinje-cell recordings in acute slices. As predicted,

the length of the pause increased with PF stimulation

strength and was shortened by an LTD induction protocol

based on coactivation of PF and CF inputs. In agreement

with this, a larger fraction of longer pauses in Purkinje-cell

activity were observed in awake behaving mice deficient

in LTD.

RESULTS

Pattern Recognition in the Purkinje-Cell Model

Figures 1 and 2 show the results of simulations where the

Purkinje-cell model received a continuous background

level of activation that caused it to fire simple spikes

with an average frequency of 48 Hz, similar to mean firing

rates observed in vivo. Learning of patterns was im-

plemented as a reduction of the AMPA receptor con-

ductances of activated PF synapses, as is the case after

induction of LTD (see Experimental Procedures). All pat-

terns comprised a set of PF inputs that were distributed

randomly across the Purkinje-cell dendritic tree. In the first

instance, we studied patterns in which 1000 randomly dis-

tributed PF synapses were activated synchronously. The

model was presented with 75 of such PF patterns that

had been learned by LTD, and its response was compared

to the response to 75 novel patterns. As shown for the in-

dividual spike responses (Figure 1A) and the raster plot

(Figure 1B), the Purkinje cell responded to both learned

as well as novel patterns with a short burst of two or three

simple spikes, and this was followed by a silent period of

several tens of milliseconds.

On the basis of this characteristic response pattern, dif-

ferent features of the spike train were identified that could

be used to discriminate between the responses to learned

and novel PF input patterns. Figure 2 shows typical re-

sponse distributions for three possible features: (1) the la-

tency of the first spike fired in response to a pattern, (2) the

number of simple spikes fired in a 25 ms time window after

presentation of a pattern, and (3) the length of the simple-

spike pause that followed the pattern presentation. For

both the latency of the first spike (Figure 2A) and the num-

ber of spikes fired immediately after pattern presentation

(Figure 2B), the distributions of responses to learned and

novel PF patterns overlapped to a large degree. These

overlapping response distributions resulted in low s/n ra-

tios of 0.33 ± 0.17 for the spike latency and 0.21 ± 0.19

for the spike number (for n = 10 sets of 75 learned pat-

terns). The best criterion for distinguishing learned and

novel patterns was the length of the simple-spike pause.

The two distributions of pause durations in response to

learned and novel patterns were clearly separated (Fig-

ure 2C), resulting in an s/n ratio of 15.6 ± 2.6 (n = 10). Sur-

prisingly, learned PF patterns resulted in shorter pauses

(37.8 ± 6.0 ms) than novel patterns (56.6 ± 3.1 ms).
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Experimental Verification

We carried out experiments on Purkinje cells in cerebellar

slices to test these modeling predictions. If, as the model

predicts, the weakening of PF inputs by LTD results in

shorter pauses after PF activation, stimuli that activate de-

creasing numbers of PFs should also lead to a decrease in

the length of the pause. We made noninvasive extracellu-

lar recordings from spontaneously spiking Purkinje cells

(Häusser and Clark, 1997; Walter et al., 2006; Womack

and Khodakhah, 2003) and activated different numbers

of PFs by using a range of stimulation strengths. To avoid

pauses in spiking associated with feed-forward inhibition

(Mittmann et al., 2005; Walter and Khodakhah, 2006), we

blocked inhibition with SR95531 (10 mM).

Figure 1. A Purkinje-Cell Model Responds to PF Input

Patterns with a Burst of Simple Spikes Followed by a Pause

(A) Background PF activity resulted in a Purkinje-cell firing frequency of

48 Hz. Presentation of a novel and a learned PF input pattern evoked

a burst of spikes followed by a pause. Note that the pause duration was

reduced for the learned pattern.

(B) Raster plots showing the presentation of 75 learned and 75 novel

PF activity patterns consisting of 1000 synchronously activated PF

synapses. Same time scale as shown in (A).
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At lower PF stimulation intensities (Figure 3A) the

evoked burst of three or four spikes was followed by the

normal spontaneous spiking of the Purkinje cell. When

PF stimulation intensities were increased, a pause devel-

oped after the burst, and this pause was lengthened as

stimulation strength was further increased. These pauses

were of durations similar to those observed in the com-

puter model (Figure 2C). Because extracellular recordings

cannot resolve the size and properties of the underlying

Figure 2. The Simple-Spike Pause Can be Used as Criterion

to Distinguish Learned and Novel PF Activity Patterns

Panels show typical response distributions for the following three fea-

tures of the spike train that could be used as criterion to recognize

learned patterns: the latency of the first simple spike fired after presen-

tation of a pattern (A), the number of spikes in the first 25 ms (B), and

the length of the simple-spike pause after the pattern presentation

(C). For the latency and spike number, the distributions of responses

to learned (red) and novel (blue) patterns overlapped to a large degree,

resulting in very low s/n ratios of 0.009 and 0.008, respectively. In con-

trast, for the pause, the two response distributions were clearly sepa-

rated with an s/n ratio of 18.6. Simulation parameters are as shown in

Figure 1.
EPSPs, we subsequently made a whole-cell patch-clamp

recording from the same Purkinje cell and recorded the

EPSP (during hyperpolarizing current steps; Figure 3B).

These whole-cell experiments also allowed us to rule out

that the spike response was due to activation of the CF.

In this (Figure 3C) and other cells (Figures 3D and 3E),

we consistently found that the amplitude of the PF EPSP

determined the length of the pause, quantified either as

an absolute duration or normalized by the spontaneous

ISI. In all cells, at least two different stimulation strengths

produced pauses of different length (p < 0.01, n = 10)

that were longer than the spontaneous ISI. All but one

cell (9/10) responded to the next smaller EPSP with a sig-

nificantly shorter pause (red connections in Figures 3D

and 3E). The average increase in pause duration was

43% ± 10% for an underlying increase in EPSP amplitude

of 52% ± 23% (n = 24 stimulation strengths in nine cells).

Conversely, pauses triggered by different EPSP sizes did

not differ significantly if the change in the underlying EPSP

was small (�6% ± 2%, n = 10 stimulation strengths in five

cells). It is possible that pauses, recorded extracellularly,

were caused by synaptically induced transitions to silent

downstates (Williams et al., 2002; Loewenstein et al.,

2005). We tested this possibility by making whole-cell

recordings, which showed a prolonged weak hyperpolar-

ization associated with the pause, similar to the model and

inconsistent with a downstate (Figure 3F, n = 4).

Under physiological conditions, the activation of a beam

of PFs not only results in excitation of Purkinje cells but

also activates inhibitory interneurons that make contacts

with Purkinje cells situated on the same (Mittmann et al.,

2005; Sultan and Bower, 1998) and on neighboring (Cohen

and Yarom, 2000; Eccles et al., 1967) PF beams. It has re-

cently been shown that PF stimulation in cerebellar slices

activates feed-forward inhibitory input that arrives approx-

imately 1 ms after the onset of the excitatory input to Pur-

kinje cells (Brunel et al., 2004; Mittmann et al., 2005). In or-

der to test whether feed-forward inhibition interfered with

the positive relationship between EPSP amplitude and

pause duration, we repeated the experiment in the pres-

ence of inhibition (i.e., without SR95531 in the bath). We

found that when inhibition was intact, the length of the

pauses in Purkinje-cell spiking increased with the magni-

tude of the EPSPs subsequently measured in whole-cell

mode (Figures 3G and 3H). In all cells (7/7), one or more

EPSPs evoked a significantly longer pause than the next

smaller EPSP (p < 0.01). On average, the pause increased

by 55% ± 19% for an underlying change in EPSP ampli-

tude of 82% ± 13% (n = 23 stimulation strengths in seven

cells). These experiments provide proof of principle that

the pause in spiking after synchronous PF inputs provides

a sensitive readout of PF EPSP size.

We next addressed the key prediction of the model by

testing whether the same PF input would lead to a shorter

pause after induction of LTD. Complex spikes were trig-

gered by selectively activating the CF with an additional

stimulation electrode. After a baseline period of 8–10 min,

we paired PF and CF input with a temporal delay
Neuron 54, 121–136, April 5, 2007 ª2007 Elsevier Inc. 123
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Figure 3. Synaptic Stimulation of Pur-

kinje Cells in Acute Cerebellar Slices

Evokes Bursts of Spikes Followed by

Pauses

The data shown in (A)–(F) were recorded while

inhibition was blocked by the addition of

SR95531 to the bath. In (G) and (H), no

SR95531 was added and inhibition was intact.

(A) Extracellular recording of spiking from a Pur-

kinje cell in a cerebellar slice. A raster plot of ten

consecutive sweeps is shown. The first sweep

in each raster is also shown as a raw trace. The

underlying EPSP amplitude for each raster was

(top to bottom) 15.5, 22.6, 26.0, and 28.6 mV.

The scale bar represents 200 pA and 100 pA

for the last raw trace.

(B) After recording, spike data in cell-attached

mode EPSPs at the respective stimulation

strength were recorded in whole-cell mode.

The scale bar represents 5 mV and 20 ms.

(C) Pause duration as function of EPSP ampli-

tude (shown by black circles), baseline inter-

spike interval (shown by rectangles), and pause

divided by the interspike interval (shifted to the

right for better visibility). Error bars indicate SE.

(D) Extracellularly recorded pause as function

of EPSP amplitude in ten cells. Red connecting

lines indicate statistical significance (p < 0.01).

(E) Same data as shown in (D), but normalized

to the baseline interspike interval.

(F) A typical spiking trace recorded in whole-

cell mode and the corresponding EPSP.

(G) EPSPs recorded at five different stimulation

strengths with inhibition intact. The scale bar

represents 5 mV and 20 ms.

(H) Pause duration as a function of EPSP ampli-

tude in seven cells with inhibition intact.
of +1 ms for 300 times at 1 Hz (Sims and Hartell, 2005). This

standard LTD induction protocol resulted in a reduction of

the pause (Figures 4A and 4B), which developed in the first

few minutes after LTD induction (Figure 4C). The average

pause duration decreased from 82 ± 22 ms to 43 ± 9 ms

after LTD induction, corresponding to a 65% ± 14% re-

duction (n = 6; Figure 4C). The change in the length of

the pause was statistically significant in all but one case

(p < 0.001; Figure 4D, left) where the pause length in-

creased. Excluding this outlier, the s/n ratio for discrimina-

tion of pauses before and after the LTD induction protocol
124 Neuron 54, 121–136, April 5, 2007 ª2007 Elsevier Inc.
was 5.6 ± 1.3 (Figure 4D, right). Consistent with the model,

other features of the spike train were poorer candidates

for pattern recognition. The s/n ratios for the number of

spikes in the burst (baseline: 3.8 ± 0.6 spikes; after induc-

tion: 3.4 ± 0.6 spikes) or the first spike latency (baseline:

1.8 ± 0.2 ms; after induction: 2.0 ± 0.2 ms) were less

than two in all but one cell. The average s/n ratio was

1.0 ± 0.4 (outlier excluded) for the number of spikes in

the burst and 0.34 ± 0.2 (outlier excluded) for the first spike

latencies (Figure 4D). PF-evoked bursts (Figure 4E, top

left) and CF responses (Figure 4E, top right) could be easily
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Figure 4. An LTD Protocol Leads to a Reduction in the Pause

(A) Spike raster showing the spiking pattern of a Purkinje cell in a cerebellar slice in response to PF stimulation before and after an LTD induction

protocol (at t = 0 min) consisting of conjunctive PF and CF stimuli. Two sample traces at times indicated by the arrows show responses before

(blue) and after (red) pairing. The scale bar represents 40 pA.

(B) The duration of the pause in spiking after PF stimulation plotted as a function of time relative to the LTD induction protocol.

(C) Averaged normalized pause length (shown by circles) and baseline interspike interval for six cells. Error bars indicate SE.

(D) Change of pause for single cells (red connection indicates statistical significance) and the corresponding s/n ratio of pause, number of spikes, and

latency. Note that the cell with a low s/n ratio for the pause is the same cell that did not show a decrease in the pause in the left plot.

(E) Extracellularly recorded responses to PF and CF stimulation and the corresponding PF EPSP and complex spike recorded intracellularly in whole-

cell mode (cell hyperpolarized to �69 mV) after collection of cell-attached data.
Neuron 54, 121–136, April 5, 2007 ª2007 Elsevier Inc. 125
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Figure 5. Increased Probabilities for Longer ISIs in LTD-Deficient L7-PKCi Mutants In Vivo

(A) and (B) show cumulative probability distributions for simple-spike firing of floccular Purkinje cells during sinusoidal optokinetic stimulation at

0.05 Hz (the wild-types are shown in red n = 7, L7-PKCi mutants are shown in blue n = 5) and 0.2 Hz (the wild-types, n = 13; L7-PKCi mutants,

n = 9), respectively. (C) shows the same distributions of floccular Purkinje cells in the absence of optokinetic stimulation (the wild-types, n = 10;

L7-PKCi mutants, n = 9). Insets indicate normalized probabilities for ISIs of 20–60ms (The scale bar represents 0.05.). (D) shows differences in surface

areas between normalized cumulative probability distributions of the wild-types and L7-PKCi mutants during both the presence (0.05 Hz and 0.2 Hz)

and absence (rest) of optokinetic stimulation. The LTD-deficient mutants show larger probabilities for longer ISIs under all circumstances, and these

probabilities increase further during stimulation.
distinguished by the characteristic features of the CF re-

sponse (including smaller spike amplitude, brief ISIs within

the burst, low variability, and their all-or-none nature). Af-

ter the induction protocol, we monitored pause duration

for 30–40 min then repatched the same cell and recorded

PF EPSPs (Figure 4E, bottom left) and CF responses (Fig-

ure 4E, bottom right) in whole-cell mode. This approach

verified the nature of the extracellularly recorded spike re-

sponses (Figure 4E, top left). These experiments therefore

confirm that an LTD induction protocol changes the pause

in spiking as predicted by the model.

Floccular Purkinje-Cell Activity In Vivo

Our model and in vitro experiments suggest that the ab-

sence of LTD should lead to a higher incidence of longer

ISIs in simple-spike firing. To find out whether such a cor-

relation occurs in vivo, we analyzed the simple-spike

activity of floccular Purkinje cells in awake behaving LTD-

deficient L7-PKCi mutant mice responding to optokinetic

stimuli (De Zeeuw et al., 1998; Goossens et al., 2004).

Figure 5 shows that the simple-spike activities of LTD-
126 Neuron 54, 121–136, April 5, 2007 ª2007 Elsevier Inc.
deficient mutant mice indeed show increased probabili-

ties for longer ISIs as compared to those of wild-type litter-

mates. These differences were significant at optokinetic

stimulation frequencies of both 0.05 Hz and 0.2 Hz (Fig-

ures 5A and 5B), and they held true both when tested for

all ISI data represented in the probability distributions

and when tested for an ISI range of 20–60 ms correspond-

ing to the pause durations (in all cases, p < 0.001; Kol-

mogorov Smirnov test; Figures 5A and 5B). Moreover,

although smaller, the same difference also occurred at

rest (p < 0.01; Kolmogorov Smirnov test; Figures 5C and

5D). Thus, a Purkinje-cell-specific impairment of induction

of LTD is associated with the expected altered simple-

spike firing patterns at rest and is even more pronounced

during natural sensory stimulation.

Mechanism of Pause Generation

and Parameter Sensitivity

A possible mechanism for the generation of simple-spike

pauses after PF activation was revealed by studying the

Purkinje-cell model. In the compartmental model, the
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Figure 6. Learned PF Patterns Result in Less Ca2+ Influx in the Model than Novel Patterns

The Purkinje-cell model was presented with one of the learned patterns and a novel pattern, and a snapshot of the Ca2+ concentration in all compart-

ments 10 ms after the pattern presentation is shown. Although the learned pattern also triggered an increase of the Ca2+ concentration compared to

the resting level of 40 nM (left), the increase in response to the novel pattern was much greater (right). Same simulation parameters as in Figure 1.
basis of the pause generation is a negative-feedback pro-

cess originating in the Purkinje-cell dendritic tree when

sufficiently strong PF inputs trigger activation of voltage-

gated Ca2+ channels (De Schutter and Bower, 1994c).

This causes a short burst of somatic spikes (Figures 1,

3A, and 4A) and Ca2+ influx into the Purkinje-cell dendrites

(Eilers et al., 1995). Dendritic Ca2+ responses to a learned

and a novel pattern in the computer model are compared

in Figure 6, and a movie showing the temporal evolution of

the Ca2+ concentration in the dendritic tree is provided as

Supplemental Data. PF patterns that had been learned by

LTD resulted in less Ca2+ influx into the dendritic tree of the

model. The Ca2+ influx led to activation of Ca2+-depen-

dent potassium channels and to a prolonged afterhyper-

polarization (AHP, Figure 1A) (Cingolani et al., 2002; Etzion

and Grossman, 1998; Fox and Gruol, 1993) that caused

the pause by inhibiting spike generation. Because the am-

plitude and duration of the AHP was related to the amount

of voltage-gated Ca2+ influx, LTD of AMPA receptor con-

ductances resulted in shorter simple-spike pauses in the

model.

Given that the generation of pauses in the model re-

quired sufficient Ca2+ influx into the dendritic tree, pattern

recognition based on pause duration is only expected to

work for PF patterns with a sufficiently large number of

synchronously active synapses. In the simulations that

were described previously (Figures 1, 2, and 6), we pre-

sented PF activity patterns in which 1000 of the 147,400

synapses were activated synchronously. This synchro-

nous activity level of approximately 0.7% is similar to pre-

vious estimates of approximately 1% (Albus, 1971; Marr,

1969; Schweighofer and Ferriol, 2000) and is in agreement

with a recent study showing optimal performance for ac-

tivity levels of 0.2%–1% (Brunel et al., 2004). We studied
the robustness of our predictions by varying the PF activity

level and found that the predictions of the model held for

patterns with at least 750 and not more than 8000 syn-

chronously active synapses (Figure S1). Patterns in which

the number of active PFs fell outside this range could not

be discriminated.

Simulated Feed-Forward Inhibition

Our recordings from Purkinje cells in cerebellar slices with

inhibition intact (Figures 3G and 3H) have shown that the

presence of inhibition does not interfere with the positive

relationship between effective PF input strength and

pause duration. Given that the amplitude of feed-forward

inhibitory input to Purkinje cells varies considerably from

cell to cell (Mittmann et al., 2005), we explored the param-

eter dependence of the effect of inhibition on pattern rec-

ognition in the model. Figure 7 shows results of simula-

tions in which the presentation of learned and novel PF

patterns was followed by inhibitory input to the Purkinje

cell with a delay of 1.4 ms (Mittmann et al., 2005) and vary-

ing strengths (see Experimental Procedures). The depen-

dence of the inhibition/excitation ratio on the number of

activated inhibitory synapses in these simulations was lin-

ear (Figure 7A). Moreover, inhibition/excitation ratios of up

to two, which exceed the range of experimental observa-

tions for EPSPs > 4 mV (Mittmann et al., 2005), still per-

mitted good pattern recognition on the basis of pause

duration (Figure 7B). For larger inhibition/excitation ratios,

the feed-forward inhibition resulted in deletion of spikes

from the initial burst and increasingly variable pause dura-

tions (Figures 7C and 7D), similar to the effect of inhibition

on response variability that has been demonstrated in pre-

vious studies (Häusser and Clark, 1997; Solinas et al.,

2006). The increased variability of pause durations was
Neuron 54, 121–136, April 5, 2007 ª2007 Elsevier Inc. 127
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Figure 7. Feed-Forward Inhibition Does

Not Affect the Model Predictions

The standard Purkinje-cell model learned 75 PF

patterns with 1000 synchronously active syn-

apses. The model was then presented with

these learned patterns and the same number

of novel patterns, each followed by input to

a varying number of inhibitory synapses with

a time delay of 1.4 ms (Mittmann et al., 2005).

(A) shows the linear relationship between the

number of inhibitory synapses activated and

the inhibition/excitation ratio (see Experimental

Procedures). (B) shows the dependence of

pattern-recognition performance on the basis

of pause duration, the number of spikes in the

burst, and spike latency on inhibition/excitation

ratio. Physiologically realistic inhibition/excita-

tion ratios of up to two (Mittmann et al., 2005)

resulted in good pattern separation on the ba-

sis of the duration of pauses. Pattern-recogni-

tion performance based on pause duration de-

teriorated not because of large changes in

pause duration but because of increased vari-

ability (C). This variability occurred when strong

inhibition reduced the number of spikes in the

burst (D). Error bars in (C) and (D) indicate SD.
responsible for the small s/n ratios in the presence of

strong inhibition (Figure 7B). Due to the deletion of spikes

from the burst, increasing the level of inhibition initially in-

creased the pause duration slightly both for learned and

novel patterns (Figure 7C). A further increase in the inhibi-

tion/excitation ratio then resulted in shortening of pauses,

presumably because of the decreased excitatory drive

and reduced Ca2+ influx. However, these effects were

small and the length of the pause (Figure 7C) was much

less affected by the presence of feed-forward inhibition

than the number of spikes in the burst (Figure 7D). We

conclude that pattern recognition based on the duration

of pauses is robust in the presence of feed-forward

inhibition.

Pattern-Recognition Performance and Comparison

with Simplified Models

An important issue in learning theory is the capacity of the

storage system (Marr, 1969). We first evaluated this in the

fully active Purkinje-cell model by computing s/n ratios for

the three selected features of the spike response after

having learned 10–300 patterns. Figure 8 shows that for

learning of up to 150 patterns, the duration of simple-spike

pauses resulted in s/n ratios of ten or greater, and it was

clearly a better pattern-classification criterion than spike

number and latency. For more than 150 learned patterns,

the s/n ratio dropped to less than ten, and the pattern-

recognition performance deteriorated. Figure 8 also com-
128 Neuron 54, 121–136, April 5, 2007 ª2007 Elsevier Inc.
pares the performance of the fully active model to that of

a corresponding artificial neural network (ANN, see Exper-

imental Procedures) and to pattern recognition on the

basis of EPSP amplitudes in a nonspiking Purkinje-cell

model where the soma had been made passive by remov-

ing all voltage-gated ion channels (Steuber and De Schut-

ter, 2001). Both the ANN and the nonspiking Purkinje-cell

model had much higher s/n ratios and therefore larger

storage capacities than the more realistic active Purkinje-

cell model with a full set of voltage-dependent ion

channels.

Robust Pause-Based Pattern Recognition

in the Presence of Spiking

Purkinje cells in vivo are characterized by their continuous

irregular spiking, caused by a combination of intrinsic

pacemaker currents and bombardment by PF back-

ground activity, and they show a wide spectrum of sim-

ple-spike rates between 10 and 100 Hz (Armstrong and

Rawson, 1979; Goossens et al., 2001; Kahlon and Lis-

berger, 2000; Loewenstein et al., 2005; Murphy and Sa-

bah, 1970; Shin et al., 2007). In order to determine the

effect of the simple-spike firing rate on the recognition of

patterns that had been learned by PF LTD, we presented

75 learned and 75 novel PF patterns to Purkinje-cell

models that received background levels of PF activity

between 0.20 and 0.56 Hz, thus resulting in simple-spike

firing with average frequencies between 0 and 130 Hz
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(Figure 9A). We found an interesting dichotomy between

the silent and firing modes of the Purkinje-cell model.

Only models in which the PF background rate was too

low to result in simple-spike firing behaved in agreement

with classic cerebellar learning theories. In these unphy-

siologically silent models, both the latency of the first spike

and the number of spikes in the first 25 ms after presenta-

tion of a pattern could be used to distinguish between

learned and novel patterns, with longer latencies and

less spikes in response to learned patterns. In contrast,

in firing Purkinje-cell models, only the length of the sim-

ple-spike pause could be a criterion for pattern classifica-

tion. Under these conditions, which mimic the in vivo situ-

ation, an increase in simple-spike-firing rates resulted in

greater s/n ratios. Thus, the duration of pauses provides

a robust pattern-recognition criterion in the presence of

ongoing neuronal activity, with an increasing amount of

PF background input leading to better performance. This

is in direct contrast to pattern recognition in an ANN,

where increasing the level of noise by increasing the back-

ground input caused a degradation of performance (Fig-

ure 9B).

Sensitivity to Noise

We then studied the effect of different types of noise that

could interfere with pattern recognition in Purkinje cells

in vivo. An important source of noise is fluctuations in

Figure 8. Dependence of Pattern-Recognition Performance
on the Number of Learned Patterns

Between 10 and 300 patterns with 1000 synchronously active PF in-

puts were learned by the standard Purkinje-cell model. The model

was presented with the learned patterns and with the same number

of novel patterns, and the pattern-recognition performance was eval-

uated by the calculation of s/n ratios for three response criteria. The

performance of the spiking model was compared with the correspond-

ing artificial neural network (ANN, see Experimental Procedures) and

with pattern recognition on the basis of the amplitude of the voltage re-

sponse in a nonspiking Purkinje-cell model with a passive soma

(Vpeak, see Steuber and De Schutter, 2001). Note the logarithmic

scale of the y axis. Simulation parameters are as shown in Figure 1.
the size of postsynaptic responses (Kreitzer and Regehr,

2000; Nusser et al., 2001; Silver et al., 1998; Wall and Uso-

wicz, 1998). In Purkinje-cell recordings in cerebellar slices,

both spontaneous glutamatergic currents and currents

evoked by stimulation of individual granule cells are highly

variable (Barbour, 1993; Isope and Barbour, 2002). This

trial-to-trial variability of postsynaptic responses is ex-

pected to have an influence on the recognition of PF

patterns. Moreover, another source of noise that could in-

fluence pattern recognition in Purkinje cells is the variable

extent of AMPA receptor LTD induced for each of the ac-

tive PF inputs in a pattern (see e.g., Figures 5 and 6 in

Wang et al. [2000] and Figures 3–5 in Xia et al. [2000]).

The effects of both quantal variance of the AMPA receptor

conductance and variability of AMPA receptor LTD are

shown in Figure 9C. Quantal variance with a coefficient

of variation (CV) of 0.5, variable LTD with a CV of 0.5, or

a combination of both did not cause a significant drop in

pattern recognition performance.

In addition to noise in the amplitude of the individual

postsynaptic responses, there could also be noise in the

timing of the afferent input. Up to now we have assumed

that a Purkinje cell has to recognize PF activity patterns

composed of the synchronous activation of a number of

PF synapses. Figure 9D demonstrates the effect of tem-

poral jitter in the PF input patterns. The individual PF

inputs in a pattern could be desynchronized over a time

window of up to 8 ms before the discrimination between

learned and novel PF patterns became impossible.

DISCUSSION

Our simulations and experimental results suggest a novel

readout of information storage in cerebellar Purkinje neu-

rons, in which synaptic weights are encoded in a pause in

spiking after synchronous synaptic activation. Surpris-

ingly, this mechanism more sensitively reflects the

strength of PF synapses than do the spikes directly trig-

gered by the synaptic input. This is in contrast to prevailing

theories of cerebellar learning and provides a new per-

spective on the cellular basis of motor learning.

LTD Decreases the Duration of Simple-Spike Pauses

LTD of the synapses between PFs and Purkinje cells is as-

sumed to be one of the substrates of learning in the cere-

bellar cortex. According to classic theories of cerebellar

learning, a Purkinje cell can store and learn to distinguish

PF activity patterns that have been presented repeatedly

together with CF input to the cell (Albus, 1971; Ito, 1984;

Marr, 1969). The resulting LTD of the PF synapses is as-

sumed to lead to a decreased rate of Purkinje-cell sim-

ple-spike firing, a reduction in the inhibition of their target

neurons in the deep cerebellar nuclei (DCN), and thus an

increased output from the cerebellum (Boyden et al.,

2006; Hansel et al., 2001; Ito, 1984; Ito, 1989; Ito, 2001;

Jorntell and Hansel, 2006; Koekkoek et al., 2003; Mauk

et al., 1998; Ohyama et al., 2003; Thompson and Krupa,

1994). The main prediction of our combined computer
Neuron 54, 121–136, April 5, 2007 ª2007 Elsevier Inc. 129
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Figure 9. Influence of Firing Rate and

Different Forms of Noise on the Pattern-

Recognition Performance

(A) Purkinje cell models that received 0.2-

0.56 Hz PF background input and fired simple

spikes with frequencies between 0 and

130 Hz learned 75 patterns with 1000 synchro-

nously active PFs. The models were presented

with the 75 learned and 75 novel patterns, and

the pattern-recognition performance was eval-

uated for the three response criteria. Only silent

Purkinje-cell models could use the latency and

spike number for pattern recognition. Purkinje-

cell models that fired simple spikes could only

use the pause, with increasing firing rates

resulting in an improved pattern-recognition

performance.

(B) The effect of PF background activity on

pattern recognition based on pauses in the

Purkinje-cell model is compared to the effect

of a corresponding form of noise in the ANN

(see Experimental Procedures).

(C) The Purkinje-cell model was presented with

the 75 learned patterns and 75 novel patterns

under conditions in which the individual

AMPA receptor mediated postsynaptic cur-

rents were variable (quantal variance, QV) or

the extent of LTD induced was variable, both

with a coefficient of variation of 0.5. Simulation

parameters are as shown in Figure 1. Error bars

indicate SD.

(D) The model was presented with 75 learned

and 75 novel patterns with 1000 active PF in-

puts that contained temporal jitter, introduced

by randomly distributing the different active in-

puts in a pattern over time windows between

0 and 25 ms. Simulation parameters are as

shown in Figure 1.
modeling and experimental study is that the readout of

learned patterns in Purkinje cells may operate in a funda-

mentally different way.

We first studied the recognition of PF activity patterns

that had been learned by LTD of AMPA receptor conduc-

tances in a biophysically realistic Purkinje-cell model. On

the basis of simulations where combined excitatory and

inhibitory background input resulted in continuous

simple-spike firing as observed in vivo (De Schutter and

Bower, 1994b; Jaeger et al., 1997), the model predicted

that synchronized PF inputs trigger a short burst of spikes

followed by a pause. The dominant effect of LTD based on

a decrease of the AMPA receptor conductances was

a shortening of the pause. This prediction was confirmed

with noninvasive extracellular recordings from Purkinje

cells in cerebellar slices. We first verified that strong syn-

chronous stimulation of PF input triggers subsequent

pauses in spontaneous firing, in agreement with a recent

report (Lev-Ram et al., 2003), as well as with in vivo extra-

cellular recordings from Purkinje neurons (Bower and

Woolston, 1983). Next, we showed directly that LTD in-

duction reduced postburst pause duration and that the

first spike latency and the number of spikes in the burst

are poorer candidates for pattern recognition compared
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to the pause. Although consistent with the model, this is

a somewhat surprising result given that Lev-Ram and col-

leagues used the number of spikes in the burst to monitor

amplitudes of PF EPSPs (Lev-Ram et al., 2003). The

smaller reduction in the number of spikes in the burst after

LTD induction we have observed (15% compared to 35%

in their study) may be related to the different induction pro-

tocol or the more physiological temperatures used in our

experiments. Our in vitro experiments thus support the

modeling results, showing that the duration of the pause

is the best candidate for pattern recognition.

Further support for the predicted shortening of pauses

by LTD was found in simple-spike activity of Purkinje cells

from awake behaving mice during optokinetic stimulation.

LTD-deficient mice showed higher probabilities for longer

pauses than wild-type mice, and such a finding is in agree-

ment with our simulation results and in vitro data. More-

over, the difference between the mutant mice and their

wild-type littermates was more pronounced during optoki-

netic stimulation than during rest, and this could fit with

a possible behavioral relevance of the pauses. Future

in vivo studies, in which pauses are measured during a

learning task such as visuovestibular training (see e.g.,

Schonewille et al. [2006]), will be needed to provide



Neuron

Cerebellar LTD and Pattern Recognition by Purkinje Cells
more direct evidence for the relevance of pauses in vivo

and their shortening by LTD induction.

Mechanism of Pause Generation

and Parameter Sensitivity

The generation of simple-spike pauses in the model was

based on Ca2+ influx through high-voltage-activated

P-type Ca2+ channels, which activated Ca2+-dependent

K+ (KCa) channels. This resulted in a prolonged AHP,

which inhibited spike generation and caused a pause in fir-

ing. In the model, the amount of Ca2+ influx and therefore

the duration of pauses increased with the effective PF in-

put strength and was reduced by LTD (Figure 6). In the ex-

periments, the activation of KCa channels could not only

be observed as an AHP in super-threshold responses

(Figure 3F) but was also reflected by the faster initial decay

of larger EPSPs (Figures 3B and 3G).

Pauses only occurred in the model when sufficiently

strong PF inputs triggered sufficient Ca2+ influx into the

dendritic tree. Similarly, weak PF stimulation did not result

in pauses in our experiments (Figure 3A). This is in agree-

ment with a recent study showing that pauses were only

generated for larger PF stimulation intensities, with in-

creasing stimulation strengths resulting in longer pause

durations (Walter and Khodakhah, 2006). Interestingly,

this study also reported AHPs in response to strong PF in-

puts (Figure S3 in their study). It is conceivable that Pur-

kinje cells decode weak and strong PF inputs in different

ways. In our model, pause-based pattern recognition

was possible for PF patterns in which at least 750 out of

all 147,400 synapses were activated (Figure S1). This cor-

responds to an activation probability of approximately

0.5%, which is a similarly low activation probability as

that for the sparse patterns that have been used in other

models of cerebellar learning (Albus, 1971; Brunel et al.,

2004; Marr, 1969; Schweighofer and Ferriol, 2000). Al-

though it is difficult to estimate exactly how many PFs

were activated in the experiments, a unitary EPSP of

0.07 mV (Isope and Barbour, 2002) would suggest ap-

proximately 290 PFs are required for a 20 mV EPSP. How-

ever, this linear estimate is likely to be a lower limit given

that shunting effects and reductions in driving force are

associated with large inputs.

Pattern recognition based on pauses required roughly

similar numbers of active PFs in models and experiments.

However, the spatial pattern of the inputs in the model and

experiments may be different. Inputs were randomly dis-

tributed over the dendritic tree in the model, but PF stim-

ulation is likely to result in the activation of PF synapses

confined to a smaller area of the Purkinje-cell dendrite.

Such clustered input has been suggested to result in

higher local glutamate concentrations (Marcaggi and

Attwell, 2005) and stronger local depolarization and Ca2+

influx (Wang et al., 2000). Clustered input could therefore

result in a lower threshold for pause generation and pause

signaling. Such a reduction in threshold is also likely to

be accompanied by a reduction in the dynamic range

because saturation effects will be more pronounced for
clustered inputs. Consistent with this speculation, we

found that in the model the s/n ratio rapidly decreased

when inputs were clustered (data not shown). This sug-

gests that in vivo Purkinje cells, which are likely to receive

a distributed input, can outperform the average s/n ratio of

six we observed with focal stimulation in vitro.

We also studied the effect of feed-forward inhibition on

pattern recognition and found that the pattern-recognition

performance was very robust against the presence of

feed-forward inhibition. Physiologically relevant inhibi-

tion/excitation ratios of up to two (Mittmann et al., 2005;

Walter and Khodakhah, 2006) still resulted in good pattern

separation (Figure 7). These simulation results are consis-

tent with our experimental data showing that the depen-

dence of pause duration on effective PF input strength is

unaffected by the presence of feed-forward inhibition (Fig-

ures 3G and 3H). We did not include plasticity of the syn-

apses between PFs and inhibitory interneurons (Jorntell

and Ekerot, 2002; Jorntell and Ekerot, 2003; Rancillac

and Crepel, 2004; Smith and Otis, 2005) in our simulations

because there is currently insufficient data available to

build realistic models of these synaptic mechanisms,

and their potential involvement are beyond the scope of

this study.

The Role of Purkinje-Cell Spiking and Noise

Existing theories of cerebellar learning tend to underesti-

mate the amount of noise and often fail to take the contin-

uous simple-spike firing in Purkinje cells into account. A

recent study of pattern storage in Purkinje cells (Brunel

et al., 2004) has suggested that each Purkinje cell could

learn to recognize approximately 40000 different PF input

patterns. However, this is on the basis of the assumptions

that the Purkinje-cell output is binary and that the com-

bined noise sources result in a SD of s % 0.4 mV. The

presence of PF background input and continuous firing

drastically reduces the number of associations that can

be learned in the more realistic Purkinje-cell model used

in this study and makes it necessary to analyze its re-

sponse over a longer time period; this invalidates the as-

sumption that a Purkinje cell can be simplified to a binary

threshold unit. Moreover, in a situation where the relevant

Purkinje-cell output is the duration of simple-spike

pauses, different types of noise can have very different

and sometimes counterintuitive effects. Our simulations

predict that pattern recognition based on the duration of

pauses is very robust in the presence of continuous spik-

ing. Furthermore, an increasing amount of PF background

activity led to an improved pattern-recognition perfor-

mance. Although surprising at first glance, the beneficial

effect of this kind of noisy synaptic input can be under-

stood by considering that a higher PF background rate de-

creases the variance in the length of simple-spike pauses,

and this results in an increased s/n ratio. Our study dem-

onstrates that a biophysically realistic Purkinje-cell model

that has been tuned to reproduce realistic in vivo behavior

can lead to completely different predictions than simpli-

fied ANNs and models that do not fire spontaneously.
Neuron 54, 121–136, April 5, 2007 ª2007 Elsevier Inc. 131
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In the presence of tonic firing, the influence of other

kinds of noise was rather weak. It has been argued that

the commonly observed trial-to-trial fluctuations in the

amplitude of postsynaptic responses present a problem

for the storage of information in synaptic weights (Poirazi

and Mel, 2001). Contrary to this suggestion, we found

that quantal variance of the AMPA receptor conductance

resulted in a surprisingly small decrease in pattern-recog-

nition performance. A similarly small drop in performance

was observed in the presence of variable AMPA receptor

LTD. The predictions of the model are very robust against

these forms of synaptic noise.

Decoding Simple-Spike Pauses

Our study suggests that the duration of simple-spike

pauses provides a better coding mechanism than spike

number or latency. Similarly, another spike-response fea-

ture, the rate of simple spikes in the burst after pattern pre-

sentation, also resulted in poor pattern separation with an

s/n ratio of 1.4 ± 0.6. Apart from the low s/n ratio, the intra

burst frequency is likely to be too high to reliably propa-

gate along the Purkinje-cell axon (Monsivais et al.,

2005). This supports the view that the spike frequency

within the burst as well as the number of spikes are less

useful than pauses for distinguishing between learned

and novel patterns over the range of PF excitation exam-

ined in this study. A consequence of a pause-based cod-

ing mechanism is that the readout is considerably slower

than possible for spike number or latency-based mecha-

nisms.

Our prediction that the duration of simple-spike pauses

could provide an important output from the cerebellar cor-

tex raises the question of how simple-spike pauses can be

decoded by neurons in the DCN. DCN neurons follow hy-

perpolarizing current pulses with a rebound depolarization

(RD), which often triggers a burst of action potentials

(Aizenman and Linden, 1999; Aizenman et al., 1998; Czu-

bayko et al., 2000; Jahnsen, 1986; Llinas and Muhlethaler,

1988; Mouginot and Gahwiler, 1995; Muri and Knopfel,

1994). Even stronger RDs can be elicited by trains of inhib-

itory postsynaptic potentials (IPSPs) that originate from

Purkinje-cell inputs (Aizenman and Linden, 1999; Aizen-

man et al., 1998; Gardette et al., 1985; Llinas and

Muhlethaler, 1988). Aizenman and Linden (1999) have

suggested that DCN neurons could use the RD to distin-

guish between PF and CF input to their presynaptic

Purkinje cells. They propose that the continuous simple-

spike firing in the Purkinje cells results in tonic inhibition

of the DCN neurons. In contrast, CF input leads to a com-

plex spike followed by a silent period in the Purkinje cell

and could elicit a RD. Similarly, a RD in a DCN cell would

be expected when the presynaptic Purkinje cells are pre-

sented with a pattern of synchronous PF inputs. Given that

learned PF patterns lead to shorter simple-spike pauses

than novel patterns, they should also trigger RDs with

shorter bursts of action potentials. Thus, we expect PF ac-

tivity patterns that have been learned by LTD at the
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PF–Purkinje-cell synapses to result in decreased output

from the DCN.

Further Predictions

We have shown that PF LTD can result in a shortening of

simple-spike pauses evoked by PF input and that this

shortening of the pauses is the most significant conse-

quence of LTD induction. If our predictions are correct,

and cerebellar learning is based on a modulation of the du-

ration of silent periods, any pharmacological intervention

that interferes with the generation or modulation of the

pauses should also inhibit learning. Interestingly, a recent

study (Koekkoek et al., 2005) has shown that eye-blink

conditioning can be impaired by an increase of the magni-

tude of LTD. A possible explanation based on our results is

that an excessive shortening of pauses due to strong LTD

makes them indistinguishable from normal ISIs.

In order for the modulated pauses to have any effect on

cerebellar output, pauses in Purkinje cells converging

onto common DCN neurons would have to be synchro-

nized. Consistent with this, in vivo recordings of nearby

Purkinje cells in anaesthetized rats have revealed that

greater than 10% of pauses are synchronized (Shin and

De Schutter, 2006). However, it has been shown that an-

esthesia can affect the Purkinje-cell firing pattern (Scho-

newille et al., 2006). Further studies, both in anaesthetized

and awake behaving animals, are required for investigat-

ing the synchronization of Purkinje-cell pauses and the

output of the DCN after LTD and how they contribute to

cerebellar learning.

EXPERIMENTAL PROCEDURES

The Purkinje-Cell Model

Simulations were performed with the GENESIS simulator (Bower and

Beeman, 1998). Unless stated otherwise, we used the multicompart-

mental Purkinje-cell model with active dendrites and soma that has

been previously described in detail (De Schutter and Bower, 1994a;

De Schutter and Bower, 1994b; see Supplemental Experimental Pro-

cedures). Purkinje cells receive PF synapses on approximately

150,000 dendritic spines (Harvey and Napper, 1991). Given that it is

computationally very expensive to simulate such a large number of

spines, two different versions of the Purkinje-cell model were used.

In an initial set of simulations, 147,400 spines were modeled. All spines

were activated independently by a random sequence of PF inputs with

an average rate of 0.28 Hz. This background excitation was balanced

by tonic background inhibition, and the standard model fired simple

spikes at an average frequency of 48 Hz. We simplified the model by

reducing the number of spines while at the same time increasing the

rate of PF background excitation. In the simplified model, only 1474

spines were represented explicitly. Each of these spines was activated

at an average frequency of 28 Hz and, like the full model, the simplified

model fired simple spikes at an average rate of 48 Hz. The initial

pattern-recognition simulations (Figures 1 and 2) were run for both

models. Given that the simplified model and the full model produced

identical results, only the simplified model was used for the parameter

search simulations (Figures 6–9). The validity of this simplification has

also been shown previously (De Schutter and Bower, 1994b).

In a set of control simulations, the effect of different levels of feed-

forward inhibition was studied by activating a variable number of inhib-

itory synapses on the soma and main dendrite (De Schutter and

Bower, 1994b). In these simulations, we verified inhibition/excitation
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ratios by voltage-clamping the model to �40 mV, i.e., half way be-

tween the excitatory and inhibitory reversal potentials, and measuring

the ratios of the mean IPSC peak to the mean EPSC peak. The inhib-

itory input followed the synchronous activation of excitatory PF synap-

ses with a delay of 1.4 ms (Mittmann et al., 2005) and had a rise time

constant of 1 ms and a decay time constant of 8 ms (W.M. and

M.H., unpublished data).

Pattern Recognition

Learning of PF activity patterns in the Purkinje-cell model was simu-

lated in two steps. In the first step, binary input patterns were gener-

ated and learned by a corresponding artificial neural network (ANN).

The resulting vector w of synaptic weights was then transferred to

the Purkinje-cell model. This two-step procedure mimics the direct

learning of PF patterns by depressing the AMPA receptor conduc-

tances in the Purkinje-cell model and makes it easier to compare the

performance of the two models. The ANN and the analysis of the

results were implemented in C++.

Storage and Recognition of Input Patterns in the ANN

The ANN has been described previously in a study of pattern recogni-

tion in nonspiking Purkinje-cell models with a passive soma (Steuber

and De Schutter, 2001). It is a modified version of an associative net-

work (Willshaw et al., 1969) with real valued synapses and an LTD

learning rule and resembles the models that have been used in classi-

cal studies of cerebellar learning (Albus, 1971; Gilbert, 1974; Marr,

1969). We used a network with 147,400 synapses, corresponding to

the number of PF inputs in the Purkinje-cell model, and stored (learned)

between 10 and 300 binary PF input patterns. Each of the binary input

patterns was a vector with N elements in randomly chosen locations

that represented active PFs and were set to 1, and 147,400–N ele-

ments that represented inactive PFs and were set to 0. Initially, all

PF synaptic weights were set to 1. When a PF input pattern was pre-

sented together with a CF signal, the pattern was learned by the de-

crease of the synaptic weights wi that were associated with active

PFs to 50% of their previous values. Learned PF patterns were en-

coded in the resulting vector w and could be recalled in the absence

of CF input. The response of the ANN was given by the sum of the

weights of all synapses that receive PF input. The ANN was presented

with the patterns that had been learned and with the same number of

novel patterns, which also contained N elements in randomly chosen

locations that were set to 1 and 147,400–N elements that were set to

0. The average level of response to learned patterns was lower than

the response to novel patterns, and the ability of the net to discriminate

between learned and novel patterns could be described by the calcu-

lation of a signal-to-noise ratio (Dayan and Willshaw, 1991; Graham,

2001):

s=n =
2ðml � mnÞ2

s2
l + s2

n

where ml and mn are the mean values, and sl
2 and sn

2 are the variances

of the response to learned and novel patterns, respectively. In a series

of control simulations, the effect of noise in the ANN was studied

(Supplemental Experimental Procedures).

Pattern Recognition in the Purkinje-Cell Model

Before learning, all PF synapses of the Purkinje-cell model activated

the same maximum AMPA receptor conductance �g0 = 0:7nS (De

Schutter and Bower, 1994b). Copying the synaptic weights wi from

the ANN to the Purkinje-cell model to mimic learning resulted in syn-

apse-specific AMPA receptor conductances that were given by

�gi = wi �g0. In analogy to the ANN, the learned PF patterns in the Pur-

kinje-cell model were encoded by the synaptic conductances and

could be recalled without coincident CF input. For each of the binary

input patterns in the ANN, the Purkinje-cell model was presented
with a corresponding pattern of AMPA receptor activation by PF input,

and the pattern-recognition performance was evaluated by the calcu-

lation of s/n ratios for the spike response’s different features, including

the latency of the first spike fired in response to a PF pattern, the num-

ber of spikes fired in a 25 ms time window after presentation of a pat-

tern, and the length of the simple-spike pause that followed the pattern

presentation. Pauses were defined as the first silent period after pat-

tern presentation that exceeded the mean baseline ISI before pattern

presentation. In cases where the presence of strong inhibition resulted

in the absence of a spike response immediately after pattern presen-

tation, the pause duration was measured starting from the first spike

before pattern presentation.

In a previous study of LTD-based pattern recognition in a nonspiking

Purkinje-cell model with a passive soma, we observed the best per-

formance for PF patterns where N = 1000 inputs (i.e., approximately

0.7% of the 147,400 inputs) were active synchronously (Steuber and

De Schutter, 2001). This number of active inputs is very similar to pre-

vious estimates (Marr, 1969; Albus, 1971; Schweighofer and Ferriol,

2000; Brunel et al., 2004). Most of the simulations presented here

also used PF patterns consisting of the synchronous activation of

1000 synapses. In a set of control simulations, the number of active

PF synapses per pattern was varied, and in another set of simulations,

the active inputs were desynchronized by random distribution of them

over time windows of up to 25 ms. In the full Purkinje-cell model, each

of the 147,400 spine heads contained one PF synapse. In the simplified

model with 1474 spines, each of the spine heads received input from

100 PFs with different synaptic weights. Pattern-recognition simula-

tions with both models produced the same results.

Purkinje-Cell Recordings In Vitro

We recorded from visually identified neurons in 300-mm-thick sagittal

slices of the cerebellar vermis. Slices were prepared from 18- to

24-day-old Sprague–Dawley rats anaesthetized via isoflurane inhala-

tion as previously described (Häusser and Clark, 1997; Stuart et al.,

1993), in accordance with institutional and national regulations. Slices

were continuously perfused with artificial cerebrospinal fluid (ACSF)

containing 125 mM NaCl, 26 mM NaHCO3, 25 mM glucose, 2.5 mM

KCl, 1.25 mM NaH2PO4, 2 mM CaCl2, and 1 mM MgCl2 bubbled

with 95% O2/5% CO2. Neurons were identified and recordings were

made under direct visual control with infrared differential-interference-

contrast optics on an upright microscope (Axioskop, Zeiss). All exper-

iments were performed at 34.2�C ± 0.2�C.

Electrophysiological recordings from Purkinje cells were made with

a Multiclamp 700A amplifier (Axon Instruments). Pipettes were pulled

to a resistance of 2–6 MU, used for loose cell-attached and whole-

cell current-clamp recordings, and filled with ACSF or a solution con-

taining 130 mM methanesulfonic acid, 10 mM HEPES, 7 mM KCl,

2 mM Na2ATP, 2 mM MgATP, 0.4 mM Na2GTP, 0.05 mM EGTA, and

biocytin (0.4%), respectively. In whole-cell recordings, pauses after

bursts evoked by PF stimulation decreased gradually with time. Pause

durations did not change systematically in cell-attached recordings

with seal resistances between 10 and 100 MU. Tight seals were

avoided because they often resulted in spontaneous transitions to

the whole-cell configuration. Liquid junction potentials were not cor-

rected for. Parallel fibers were stimulated with pipettes containing

ACSF placed >50 mm below the dendritic tree of the recorded cell so

that activation of the CF could be avoided. CFs were activated with

a second ACSF-filled electrode placed in the granule cell layer. GABAA

receptors were blocked by bath application of the specific antagonist

SR95531 (‘‘SR’’) (Hamann et al., 1988), except when otherwise noted.

Data were low-pass filtered at 4–10 kHz and sampled at 20 kHz with

a 1321A Digidata A/D converter (Axon Instruments). Data were ana-

lyzed offline with Igor Pro (Wavemetrics). Data are presented as

mean ± SE, and statistical significance was tested with the Student’s

unpaired t test. Data in Figure 4C were averaged over 2 min bins,

and statistical significance was calculated from the binned data.
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Adult LTD-deficient L7-PKCi mice (n = 9) and wild-type littermates (n =

13) were prepared for chronic recording experiments and subjected to

optokinetic stimulation as described in detail by De Zeeuw et al. (1998)

and by Goossens et al. (2004). All preparations were done according to

the European Community Council Directive (86/609/EEC) and ap-

proved by the Dutch Ethical Committee (DEC) for animal experiments.

In brief, the animals were anesthetized, and they received a pedestal

and a recording chamber placed over the paramedian lobule of the

cerebellum. Subsequently, the animals were allowed to recover for

a period of 3–4 days, and extracellular Purkinje-cell activity was re-

corded from the left flocculus. The electrophysiological signals were

amplified, filtered, digitized, and analyzed with MATLAB (Cyberamp

and CED 1401 plus units, CED; Mathworks). Single units were identi-

fied by the presence of a clean pause in simple-spike firing of at least

5 ms after the occurrence of a complex spike. The simple-spike activity

was recorded during both spontaneous activity in the dark and optoki-

netic stimulation. Binocular visual stimulation was provided by a drum

consisting of a random, black-and-white pattern rotating with an am-

plitude of 5� at 0.05 Hz or 0.2 Hz. Once a floccular Purkinje cell was iso-

lated, the preferred axis of modulation was determined by rotating the

optokinetic stimulus around the vertical axis or a horizontal axis at 135�

azimuth, ipsilateral to the side of the recording. Only Purkinje cells with

a preferred rotation around the vertical axis were used for the present

study. Cumulative probabilities of simple-spike interspike intervals

were calculated with all interspike intervals per stimulus condition.

Supplemental Data

The Supplemental Data for this article can be found online at http://

www.neuron.org/cgi/content/full/54/1/121/DC1/.

ACKNOWLEDGMENTS

Many thanks to Reinoud Maex for helpful discussions. V.S. is grateful

for a Human Frontier Science Program Long-Term Fellowship and to

the Medical Research Council (0400598; R.A.S.), which provided him

with financial support. The work was also supported by grants from

the National Fund for Scientific Research (FWO; Belgium) and the

University of Antwerp (EDS), the European Commission (QLRT-

2001-2256; C.I.D.Z., E.D.S., M.H. and R.A.S.), the Dutch Organization

for Medical Sciences (ZON-MW), Life Sciences (NWO-ALW), Senter

(Neuro-Bsik), Prinses Beatrix Fonds (C.I.D.Z.), an EUR-fellowship of

the Erasmus University Rotterdam (F.E.H.), and the Gatsby Foundation

(M.H.). R.A.S. and M.H. are in receipt of Wellcome Trust Senior

Research Fellowships in Basic Biomedical Science.

Received: May 20, 2006

Revised: December 2, 2006

Accepted: March 16, 2007

Published: April 4, 2007

REFERENCES

Aizenman, C.D., and Linden, D.J. (1999). Regulation of the rebound

depolarization and spontaneous firing patterns of deep nuclear neu-

rons in slices of rat cerebellum. J. Neurophysiol. 82, 1697–1709.

Aizenman, C.D., Manis, P.B., and Linden, D.J. (1998). Polarity of long-

term synaptic gain change is related to postsynaptic spike firing at

a cerebellar inhibitory synapse. Neuron 21, 827–835.

Albus, J.S. (1971). A theory of cerebellar function. Math. Biosci. 10,

25–61.

Armstrong, D.M., and Rawson, J.A. (1979). Activity patterns of cere-

bellar cortical neurones and climbing fibre afferents in the awake cat.

J. Physiol. 289, 425–448.

Barbour, B. (1993). Synaptic currents evoked in Purkinje cells by stim-

ulating individual granule cells. Neuron 11, 759–769.
134 Neuron 54, 121–136, April 5, 2007 ª2007 Elsevier Inc.
Bower, J.M., and Beeman, D. (1998). The book of GENESIS: Exploring

realistic neural models with the GEneral NEural SImulation System,

2nd edition (New York, NY: TELOS).

Bower, J.M., and Woolston, D.C. (1983). Congruence of spatial orga-

nization of tactile projections to granule cell and Purkinje cell layers

of cerebellar hemispheres of the albino rat: Vertical organization of

cerebellar cortex. J. Neurophysiol. 49, 745–766.

Boyden, E.S., Katoh, A., Pyle, J.L., Chatila, T.A., Tsien, R.W., and

Raymond, J.L. (2006). Selective engagement of plasticity mechanisms

for motor memory storage. Neuron 51, 823–834.

Brunel, N., Hakim, V., Isope, P., Nadal, J.P., and Barbour, B. (2004).

Optimal information storage and the distribution of synaptic weights:

Perceptron versus Purkinje cell. Neuron 43, 745–757.

Cingolani, L.A., Gymnopoulos, M., Boccaccio, A., Stocker, M., and

Pedarzani, P. (2002). Developmental regulation of small-conductance

Ca2+-activated K+ channel expression and function in rat Purkinje

neurons. J. Neurosci. 22, 4456–4467.

Cohen, D., and Yarom, Y. (2000). Cerebellar on-beam and lateral inhi-

bition: Two functionally distinct circuits. J. Neurophysiol. 83, 1932–

1940.

Czubayko, U., Sultan, F., Thier, P., and Schwarz, C. (2000). Two types

of neurons in the rat cerebellar nuclei as distinguished by membrane

potentials and intracellular fillings. J. Neurophysiol. 85, 2017–2029.

Dayan, P., and Willshaw, D.J. (1991). Optimising synaptic learning

rules in linear associative memories. Biol. Cybern. 65, 253–265.

De Zeeuw, C.I., Hansel, C., Bian, F., Koekkoek, S.K., van Alphen, A.M.,

Linden, D.J., and Oberdick, J. (1998). Expression of a protein kinase C

inhibitor in Purkinje cells blocks cerebellar LTD and adaptation of the

vestibulo-ocular reflex. Neuron 20, 495–508.

De Schutter, E., and Bower, J.M. (1994a). An active membrane model

of the cerebellar Purkinje cell. I. Simulation of current clamps in slice.

J. Neurophysiol. 71, 375–400.

De Schutter, E., and Bower, J.M. (1994b). An active membrane model

of the cerebellar Purkinje cell: II. Simulation of synaptic responses.

J. Neurophysiol. 71, 401–419.

De Schutter, E., and Bower, J.M. (1994c). Simulated responses of

cerebellar Purkinje cells are independent of the dendritic location of

granule cell synaptic inputs. Proc. Natl. Acad. Sci. USA 91, 4736–4740.

Eccles, J.C., Ito, M., and Szentagothai, J. (1967). The cerebellum as

a neuronal machine (Berlin: Springer-Verlag).

Eilers, J., Augustine, G.J., and Konnerth, A. (1995). Subthreshold syn-

aptic Ca2+ signaling in fine dendrites and spines of cerebellar Purkinje

neurons. Nature 373, 155–158.

Etzion, Y., and Grossman, Y. (1998). Potassium currents modulation of

calcium spike firing in dendrites of cerebellar Purkinje cells. Exp. Brain

Res. 122, 283–294.

Fox, E.A., and Gruol, D.L. (1993). Corticotropin-releasing factor

suppresses the afterhyperpolarization in cerebellar Purkinje neurons.

Neurosci. Lett. 149, 103–107.

Gardette, R., Debono, M., Dupont, J.-L., and Crépel, F. (1985). Electro-

physiological studies on the postnatal development of intracerebellar

nuclei neurons in rat cerebellar slices maintained in vitro. I. Postsynap-

tic potentials. Brain Res. 19, 47–55.

Gilbert, P.F.C. (1974). A theory that explains the function and structure

of the cerebellum. Brain Res. 1974, 1–18.

Goossens, H.H., Hoebeek, F.E., Van Alphen, A.M., Van Der Steen, J.,

Stahl, J.S., De Zeeuw, C.I., and Frens, M.A. (2004). Simple spike and

complex spike activity of floccular Purkinje cells during the optokinetic

reflex in mice lacking cerebellar long-term depression. Eur. J. Neuro-

sci. 19, 687–697.

Goossens, J., Daniel, H., Rancillac, A., Van der Steen, J., Oberdick, J.,

Crepel, F., De Zeeuw, C.I., and Frens, M.A. (2001). Expression of pro-

tein kinase C inhibitor blocks cerebellar long-term depression without

http://www.neuron.org/cgi/content/full/54/1/121/DC1/
http://www.neuron.org/cgi/content/full/54/1/121/DC1/


Neuron

Cerebellar LTD and Pattern Recognition by Purkinje Cells
affecting Purkinje cell excitability in alert mice. J. Neurosci. 21, 5813–

5823.

Graham, B. (2001). Pattern recognition in a compartmental model of

a CA1 pyramidal neuron. Network 12, 473–492.

Hamann, M., Desarmenien, M., Desaulles, E., Bader, M.F., and Feltz,

P. (1988). Quantitative evaluation of the properties of a pyridazinyl

GABA derivative (SR 95531) as a GABAA competitive antagonist. An

electrophysiological approach. Brain Res. 442, 287–296.

Hansel, C., Linden, D.J., and D’Angelo, E. (2001). Beyond parallel fiber

LTD: The diversity of synaptic and non-synaptic plasticity in the cere-

bellum. Nat. Neurosci. 4, 467–475.

Harvey, R.J., and Napper, R.M.A. (1991). Quantitative studies of the

mammalian cerebellum. Prog. Neurobiol. 36, 437–463.
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