
ARTICLE Communicated by Kechen Zhang

Efficient Learning and Feature Selection
in High-Dimensional Regression

Jo-Anne Ting
jting@acm.org
University of Edinburgh, Edinburgh EH8 9AB, U.K.

Aaron D’Souza
adsouza@google.com
Google Inc., Mountain View, CA 94043, U.S.A.

Sethu Vijayakumar
sethu.vijayakumar@ed.ac.uk
University of Edinburgh, Edinburgh EH8 9AB, U.K.

Stefan Schaal
sschaal@usc.edu
University of Southern California, Los Angeles, CA 90089, U.S.A., and
ATR Computational Neuroscience Laboratories, Kyoto, Japan

We present a novel algorithm for efficient learning and feature selection in
high-dimensional regression problems. We arrive at this model through
a modification of the standard regression model, enabling us to derive a
probabilistic version of the well-known statistical regression technique
of backfitting. Using the expectation-maximization algorithm, along with
variational approximation methods to overcome intractability, we extend
our algorithm to include automatic relevance detection of the input fea-
tures. This variational Bayesian least squares (VBLS) approach retains its
simplicity as a linear model, but offers a novel statistically robust black-
box approach to generalized linear regression with high-dimensional
inputs. It can be easily extended to nonlinear regression and classifica-
tion problems. In particular, we derive the framework of sparse Bayesian
learning, the relevance vector machine, with VBLS at its core, offering sig-
nificant computational and robustness advantages for this class of meth-
ods. The iterative nature of VBLS makes it most suitable for real-time in-
cremental learning, which is crucial especially in the application domain
of robotics, brain-machine interfaces, and neural prosthetics, where real-
time learning of models for control is needed. We evaluate our algorithm
on synthetic and neurophysiological data sets, as well as on standard re-
gression and classification benchmark data sets, comparing it with other
competitive statistical approaches and demonstrating its suitability as a
drop-in replacement for other generalized linear regression techniques.

Neural Computation 22, 831–886 (2010) C© 2009 Massachusetts Institute of Technology

832 J. Ting, A. D’Souza, S. Vijayakumar, and S. Schaal

1 Introduction

Real-world data such as those obtained from neuroscience, chemomet-
rics, data mining, or sensor-rich environments are often extremely high-
dimensional, severely underconstrained (few data samples compared to
the dimensionality of the data), and interspersed with a large number of
irrelevant or redundant features. Combined with inevitable measurement
noise, efficient learning from such data still poses a significant challenge
to state-of-the-art supervised learning algorithms, even in linear settings.
We are especially interested in scenarios where a large number of high-
dimensional samples need to be processed, potentially in a real-time, incre-
mental fashion (i.e., where d is the number of input dimensions, N is the
number of samples in the data set, and d < N). While traditional statistical
techniques for supervised learning (e.g., partial least squares regression,
backfitting) are often efficient and robust for these problems, they lack a
probabilistic interpretation and cannot easily provide measures needed for
model selection such as the evidence of the data or predictive distributions.
Yet while recent statistical learning algorithms in supervised learning com-
pute such information, some lack computational efficiency as, for instance,
in gaussian process regression or classical implementations of support vec-
tor learning, especially in the d < N scenarios we are interested in.

Our article introduces a new algorithm, variational Bayesian least
squares (VBLS), that possesses both efficiency and a sound probabilistic
foundation. It is derived by developing a Bayesian formulation of a classi-
cal nonparametric, nonprobabilistic regression algorithm. We demonstrate
that the algorithm can significantly improve the computational efficiency
of sparse Bayesian learning while performing feature detection and au-
tomatic relevance determination. Additionally, the algorithm avoids any
potentially expensive cross-validation or tuning of meta parameters by the
user, offering a statistically robust, “automatic” method that can be applied
across data sets from various systems and incorporated into more com-
plex learning algorithms. In this way, we can apply this technique to very
high-dimensional problems in both linear and nonlinear scenarios.

The algorithm can be interpreted as a Bayesian version of backfitting that
does not require any sampling, making it suitable for implementation in
incremental form for real-time applications (e.g., as in application domains
such as robotics, brain-machine interfaces, and tracking systems) and for
embedment in other iterative methods.

The iterative nature of VBLS is invaluable in real-time situations where
decisions need to be made quickly, such that an approximate solution is
acceptable. In these scenarios, waiting a longer time for a very accurate
solution may not be an acceptable alternative. Additionally, VBLS is most
advantageous when embedded in other iterative methods, offering a sig-
nificant computational improvement.

Efficient High-Dimensional Regression 833

N
xd

x2

x1

yi

ψy

b

Figure 1: Graphical model for linear regression. Note the fan-in, which causes
the estimates of the individual regression coefficients bm to become coupled in
the posterior.

We start by discussing some of the popular approaches for supervised
learning of high-dimensional, underconstrained data, examining methods
such as principal component regression, backfitting, partial least-squares
regression, and least absolute shrinkage and selection operator regression,
to name a few. Then, in section 3, we derive backfitting from a probabilistic
model and solve it within the expectation-maximization (EM) framework.
Third, we extend the model to incorporate structured priors, as described
in section 4, allowing us to exploit Bayesian model selection. Using a vari-
ational approximation technique, we arrive at a new algorithm, VBLS, that
can be applied to both regression and classification problems. Section 5
shows that while VBLS is derived within the context of a linear model, it
is also a powerful tool for supervised learning in nonlinear settings. Fi-
nally, we evaluate VBLS on high-dimensional synthetic and real data sets,
demonstrating its significant computational advantages over other compet-
itive statistical learning methods.

2 Computationally Tractable Linear Regression

We begin by examining the graphical model for linear regression, as shown
in Figure 1, which corresponds to the following generative model:

y = bT x + ε, (2.1)

834 J. Ting, A. D’Souza, S. Vijayakumar, and S. Schaal

where, for successive samples from this model, we assume the ε are inde-
pendent and identically distributed (i.i.d.) as ε ∼ Normal(ε; 0, ψy). Given
a data set of observed tuples xD = {(xi , yi)}N

i=1, our goal is to estimate the
optimal linear coefficients b = [b1 b2 · · · bd]T , which combine the input
dimensions to produce the output y.

It is easy to see that under our current noise model, the optimal estimate
of the regression parameters (in a least squares or maximum likelihood
sense) is given by

bOLS = (
XT X

)−1
XT y, (2.2)

where X denotes a matrix whose rows contain the xi and y is a column
vector containing the corresponding yi . Equation 2.2 is also known as the
ordinary least squares (OLS) solution. A fan-in of the type observed from
x to y in Figure 1 couples all the regression coefficients in the posterior
inference—a fact reflected in the need to evaluate the covariance matrix
XT X in equation 2.2. With an increasing number of fan-in variables in the
graphical model (or, equivalently, an increasing input dimensionality d),
evaluation of the solution in equation 2.2 becomes increasingly computa-
tionally expensive (approximately O(d3)) and numerically brittle. While
one can attempt to reduce the complexity to O(d2) with efficient matrix in-
version techniques (Belsley, Kuh, & Welsch, 1980), solutions to this problem
typically fall into one of two categories:

1. Dimensionality reduction for regression: Those that try to find a low-
dimensional, full-rank representation of the data that captures the
salient information required to perform the regression.

2. Data structures for fast statistics: Those that deal with the complete
dimensionality but structure computations as efficiently and robustly
as possible (e.g., by performing successive inexpensive univariate
regressions).

In the following subsections, assume we are given a data set {X, y}
with inputs X = [x1 . . . xN]T consisting of d-dimensional vectors xi (where
i = 1, 2, . . . , N and N is the number of data samples) and outputs y =
[y1 . . . yN]T consisting of scalars yi . Without any loss of generality, we shall
assume that both X and y are mean zero. We want to find the vector b of
regression coefficients that linearly combine the input x to predict y.

In an attempt to perform a comprehensive (although not exhaustive)
review of the literature, we discuss some examples of algorithms that are
representative of the two categories described above.

2.1 Dimensionality Reduction for Regression. Often the information
relevant to predicting the output y can be localized to a low-dimensional
manifold within the domain of x. The methods discussed in this section rely

Efficient High-Dimensional Regression 835

on the assumption that when a dimensionality reduction on the input space
is performed, the resulting lower-dimensional manifold captures sufficient
information to accurately predict the output.

2.1.1 Principal Component Regression. The underlying basis of principal
component regression (PCR) (Massey, 1965) is that the low-dimensional
subspace that explains the most variance in the x also captures the most
essential information required to predict y. Starting with the empirical co-
variance matrix �PCR of the input data,

�PCR = 1
N − 1

N∑

i=1

xi xT
i , (2.3)

we compute its eigendecomposition,

�PCRv j = λ j u j , (2.4)

where u j is the j th eigenvector and λ j the corresponding eigenvalue. By
projecting the input x onto the principal K eigenvectors using the projec-
tion matrix U = [u1 u2, . . . , uK], we can compute the regression solution as
follows:

bPCR = (
UT XT XU

)−1
UT XT y. (2.5)

Note that as a result of the projection onto the orthogonal eigenvectors
u1, . . . , uK , the matrix

(
UT XT XU

)
in equation 2.5 is diagonal, and hence,

trivial to invert—the brunt of the computation having already been ex-
pended in the eigendecomposition step. As a result, PCR essentially reduces
the multivariate regression to a set of independent univariate regressions
along each of the orthogonal principal component directions.

A serious drawback of PCR is that it is based purely on variance in the
input data (Schaal, Vijayakumar, & Atkeson, 1998). The regression solution
is therefore highly sensitive to preprocessing operations such as sphering,
which modify the perceived variance of each input dimension. Hence, low-
variance input dimensions that are nevertheless important predictors of the
output may be discarded in favor of high-variance but irrelevant dimen-
sions. If, however, we operate on the joint space z = [xT y]T of the data, we
can take the output into consideration when determining the appropriate
lower-dimensional manifold.

2.1.2 Joint-Space Factor Analysis for Regression. Factor analysis (Everitt,
1984; Ghahramani & Hinton, 1997) is a density estimation technique that
assumes that the observed data z are generated from a lower-dimensional

836 J. Ting, A. D’Souza, S. Vijayakumar, and S. Schaal

process characterized by K latent or hidden variables v as follows:

zi = Wvi + εi where 1 ≤ i ≤ N. (2.6)

If we assume that the latent variables are independently distributed as

vi ∼ Normal(vi ; 0, I)1

εi ∼ Normal(εi ; 0,�),

then the parameters W and � can be easily estimated using maximum
likelihood (Ghahramani & Hinton, 1997) or Bayesian (Ghahramani & Beal,
2000a) techniques. In joint-space factor analysis for regression (JFR), we
define

z ≡
[

x

y

]

and W ≡
[

Wx

Wy

]

and � ≡
[
�x 0

0T ψy

]

. (2.7)

Once we estimate W and � for the joint data space of z, we can condition y
on x and marginalize out the latent variables v to obtain

〈y|x〉 = Wy
(
I + WT

x �−1
x Wx

)−1
WT

x �−1
x︸ ︷︷ ︸

bT
JFR

x, (2.8)

where 〈·〉 indicates expectation. Equation 2.8 is equivalent to

bJFR = �−1
x Wx

(
I + WT

x �−1
x Wx

)−1
WT

y . (2.9)

Note that the required matrix inversion of
(
I + WT

x �−1
x Wx

)
is of the order

of the latent dimensionality K , which makes joint space factor analysis for
regression computationally attractive for problems in which the underlying
latent variable manifold is known to be relatively low dimensional (i.e.,
K � d).

2.1.3 Joint Space Principal Component Regression. Tipping and Bishop
(1999) show the relationship between factor analysis and principal com-
ponent analysis. In particular, they show that factor analysis reduces to
PCA if isotropic output noise is assumed (i.e., � = σ 2I). Taking the factor

1The notation Normal(x;μ,�) denotes a Normal distribution over x with mean μ and
covariance �.

Efficient High-Dimensional Regression 837

analysis solution for regression in equation 2.9 and assuming that � = σ 2I,
we can simplify the regression solution so that it is

b = (
σ 2I

)−1
Wx

(
I + WT

x

(
σ 2I

)−1
Wx

)−1WT
y

= Wx
(
σ 2I + WT

x Wx
)−1

WT
y . (2.10)

Additionally, in PCA for regression, if we follow the assumption that
v ∼ Normal (0, I), then each column of W is an eigenvector scaled by its
corresponding eigenvalue:

W = [λ1u1 λ2u2, . . . , λKuK] = U�, (2.11)

where, as defined in section 2.1.1, U = [u1 u2, . . . , uK] is a d × K matrix of
principal eigenvectors and � is the diagonal matrix of corresponding eigen-
values (i.e., [λ1 λ2, . . . , λK] in its diagonal). Making use of the orthogonality
of the eigenvectors, we can write

WT
x Wx = WT W − WT

y Wy

= �2 − WT
y Wy.

If we denote �̄
2 = σ 2I + �2, then we can rewrite equation 2.10 to get:

b = Wx
(
�̄

2 − WT
y Wy

)−1WT
y

= Wx
[
�̄

−2 − �̄
−2WT

y

(
Wy�̄

−2WT
y − I

)−1Wy�̄
−2]WT

y . (2.12)

Since we have a scalar output y, the matrix inversion (Wy�̄
−2Wy − I)−1

reduces to a scalar division, making equation 2.12 now

b = Wx

[

�̄
−2 − �̄

−2WT
y Wy�̄

−2

Wy�̄
−2WT

y − 1

]

WT
y . (2.13)

If we take the limit of the quantity above as σ 2 approaches 0, then �̄
2 = �2—

exactly the matrix of squared eigenvalues. In this case, we can further
simplify equation 2.13 as

bJPCR = Ux

[

I − UT
y Uy

UyUT
y − 1

]

UT
y , (2.14)

838 J. Ting, A. D’Souza, S. Vijayakumar, and S. Schaal

where U = [UT
x UT

y]T is the matrix containing the eigenvectors of the joint
data z in its columns.

2.1.4 Kernel Dimensionality Reduction for Regression. Fukumizu, Bach, and
Jordan (2006) have suggested the following method to achieve dimension-
ality reduction for regression. Assume that [U V] is the d-dimensional or-
thogonal matrix, where U spans the subspace of x “relevant” to predicting
y and V spans the orthogonal “irrelevant” subspace.

If we define xR = UT x and xR̄ = VT x, then kernel dimensionality re-
duction seeks to find the subspace that minimizes I (y | xR, xR̄ | xR), where
I (x1, x2) denotes mutual information defined by

I (x1, x2) =
∫ ∫

p(x1, x2) log
p(x1, x2)

p(x1)p(x2)
dx1dx2.

This concept is extended to the more general case of reproducing kernel
Hilbert spaces on the domains of y, xR and xR̄ endowed with gaussian
kernels.

It should be emphasized that as with the other methods described in this
section, kernel dimensionality reduction requires that the latent dimension-
ality K be a known quantity. In general, however, unless explicit meta-level
knowledge of the data is known beforehand, the estimation of this quantity
would require expensive cross-validation to avoid overfitting.

2.1.5 Stepwise Regression. Stepwise regression (Derksen & Keselman,
1992) is a popular statistical technique for large data sets that chooses dimen-
sions to include in a regression model. The selection of dimensions for the
model can be in a forward or backward manner. For example, forward step-
wise regression starts with no terms in the model and at each step adds the
most statistically significant dimension (using either the highest f -statistic
or lowest p-value) until none are left. In contrast, backward stepwise regres-
sion starts with all dimensions in the model and removes the least significant
until the remaining dimensions are statistically significant. Unfortunately,
there are several issues with stepwise regression. These include its inability
to cope with redundant dimensions (it deteriorates in the presence of
collinearity) and its inability to shrink regression coefficients (Tibshi-
rani, 1996), resulting in regression coefficients that are too large. These
properties, among others, make it problematic for high-dimensional data
sets.

2.1.6 Partial Least Squares Regression. Instead of seeking a low-
dimensional version of the problem, some methods seek to structure
the computation in such a way that the problem is decomposed into
computationally efficient subproblems. For example, by decomposing the

Efficient High-Dimensional Regression 839

multivariate regression problem into successive univariate regressions, one
can create robust, iterative methods that do not suffer from the difficulties
of matrix inversion for underconstrained data sets. Partial least squares
regression (PLS) (Wold, 1975) is one example of such a method:

Algorithm 1: Partial Least Squares Regression
1: Initialize: Xres = X, yres = y
2: for k = 1 to K do //K ≤ d where d is max. input dim
3: vk ← XT

resyres //correlation direction
4: sk ← Xresvk //project input
5: bk ← sT

k yres/
(
sT

k sk
)

//univariate regression
6: yres ← yres − bksk //compute residual output
7: Xres ← Xres − skpT

k where pk ≡ XT
ressk/(sT

k sk) //compute residual input
8: end for

In section 2.1.1, we noted that PCR projected the input data onto a very
specific set of directions: the principal eigenvectors. As a direct result, the
coefficients of the optimal regression vector bPCR fall out of inexpensive
univariate regressions along each projection direction. However, obtaining
the eigenvectors is an (expensive for large d) O(d3) operation that can be
reduced to a faster O(d2). It is here that PCR must expend the bulk of its
computation.

PLS regression is a technique that is extensively used in high-
dimensional and severely underconstrained domains such as in chemo-
metrics. Rather than compute the covariance structure of the input space,
as is done in PCR, PLS iteratively chooses its projection directions vk (at
the kth iteration) according to the direction of maximum correlation be-
tween the (current residual) input and the output. Computation of each
projection direction is O(d) (linear) in the dimensionality of the data, mak-
ing PLS a highly efficient algorithm. As shown in algorithm 1, successive
iterations create orthogonal projection directions by removing the subspace
of the input data used in the last projection. PLS requires no expensive
matrix inversion or eigendecomposition and thus is well suited to the high-
dimensional yet severely underconstrained data sets in applications such
as near infrared (NIR) spectrometry (Frank & Friedman, 1993).

The number of projection directions found by PLS is bound only by
the dimensionality of the data, with each univariate regression on suc-
cessive projection components further serving to reduce the residual er-
ror. Using all d projections is equivalent to performing ordinary least
squares (OLS) regression. Hence, to avoid overfitting, the algorithm is
typically stopped after K projection components are found, where K is
determined empirically using cross-validation. It can be shown that if the
distribution of the input data is spherical (i.e., has covariance structure
σ 2I), then PLS requires only a single projection to optimally reconstruct the
output.

840 J. Ting, A. D’Souza, S. Vijayakumar, and S. Schaal

2.1.7 Backfitting. Another very general framework for estimating ad-
ditive models of the form y(x) = ∑d

m=1 gm(x; θm) is backfitting (Hastie &
Tibshirani, 1990), where the functions gm are adjustable basis functions
(e.g., splines), parameterized by θm. As shown in algorithm 2, backfitting
decomposes the statistical estimation problem into d individual estimation
problems by creating “fake supervised targets” for each function gm:

Algorithm 2: Backfitting
1: Init: X = [x1, . . . , xN]T , y = [y1, . . . , yN]T , gm,i = gm(xi ; θm), gm =

[gm,1, . . . , gm,N]T

2: repeat
3: for m = 1 to d do
4: rm ← y − ∑

k
=m gk //compute partial residual (fake target)
5: θm ← arg minθm (gm − rm)2 //optimize to fit partial residual
6: end for
7: until convergence of θm

At the cost of an iterative procedure, this strategy effectively reduces the
computational complexity of fan-ins in graphical models and allows easier
numerical robustness control since no matrix inversion is involved.

For all its computational attractiveness, backfitting presents two seri-
ous drawbacks. First, there is no guarantee that the iterative procedure
outlined in algorithm 2, will converge as it is heavily dependent on the
nature of the functions gm. Second, the updates have no probabilistic inter-
pretation, making backfitting difficult to insert into the current framework
of statistical learning, which emphasizes confidence measures, model se-
lection, and predictive distributions. Note that Hastie & Tibshirani (2000)
have proposed a Bayesian version of backfitting. Their algorithm, how-
ever, relies on Gibbs sampling, which is more suitable when dealing with
the nonparametric spline models discussed there and is quite useful for
generating samples from the posterior additive model. We instead focus
on developing a Bayesian version of backfitting that does not require
any sampling and, hence, can be implemented in incremental form for
use in real-time applications such as real-time brain-machine interfaces or
robotics.

In practice, a large class of methods can be traced to have similar com-
putational underpinnings. For example, in the case of linear regression
(XT Xb = XT y), Gauss-Seidel/Jacobi updates are a natural specialization of
the general backfitting algorithm:

bm =

partial residual
︷ ︸︸ ︷
(y − Xm̄bm̄)T xm

xT
mxm

(2.15)

Efficient High-Dimensional Regression 841

where xm = [x1m · · · xNm]T , the vector of mth dimension entries, while Xm̄

denotes the data matrix with the mth dimension removed and bm̄ denotes
the regression coefficient vector with the mth coefficient removed. The well-
known cascade correlation neural network architecture (Fahlman & Lebiere,
1989) can also be seen to have similar algorithmic underpinnings; the ad-
dition of each new hidden unit can be considered to be the tuning of an
additional basis function in the sequence, with the previous basis functions
being locked to their previously tuned forms.

2.1.8 Least Absolute Shrinkage and Selection Operator Regression. Least ab-
solute shrinkage and selection operator (LASSO) regression (Tibshirani,
1996) shrinks certain regression coefficients to zero, giving interpretable
models that are sparse. It minimizes the sum of squared errors, given a fixed
bound on the sum of absolute value of the regression coefficients. However,
LASSO regression and a wealth of other L1-regularized regression methods
have an open parameter, typically a regularization parameter, that needs
to be set. Some of the methods for solving L1-regularized regression prob-
lems (especially large-scale problems) include convex optimization tech-
niques such as sequential quadratic programming or interior point methods
(Kim, Koh, Lustig, Boyd, & Gorinevsky, 2007), coordinate descent methods
(Friedman, Hastie, & Tibshirani, 2007), the Gauss-Seidel method (Shevade &
Keerthi, 2003), generalized iterative scaling (Goodman, 2004), and iterative
reweighted least squares (Lokhorst, 1999; Lee, Lee, Abbeel, & Ng, 2006).

The LASSO estimate b̂lasso is then defined as

b̂lasso = arg min

⎧
⎪⎨

⎪⎩

N∑

i=1

⎛

⎝yi −
∑

j

b j xi j

⎞

⎠

2
⎫
⎪⎬

⎪⎭
subject to

∑

j

| b j |≤ t,

where t ≥ 0 is a tuning parameter that can be set using n-fold cross-
validation or manual hand-tuning. For smaller values of t, LASSO regres-
sion gives solutions that are sparse estimates of the least squares estimates.
For larger values of t, the above constraint has little effect, resulting in a
solution similar to ridge regression. The main difference between LASSO
regression and ridge regression is that LASSO attempts to shrink the solu-
tion by using L1 penalty norm (i.e.,

∑
b), while ridge regression uses L2

penalty norm (i.e.,
∑

b2). Ng (2004) shows that this contributes to LASSO
being an effective algorithm suitable for high-dimensional data sets, at the
expense of an open parameter that needs to be set using cross-validation
or through the optimization of a regularization “path” of solutions (Efron,
Hastie, Johnstone, & Tibshirani, 2004).2

2That is, solutions that minimize the L1 loss function. When the value of the open or
tuning parameter changes, regularization paths of solutions are generated.

842 J. Ting, A. D’Souza, S. Vijayakumar, and S. Schaal

2.2 Data Structures for Fast Statistics. Significant computational gains
can be achieved by using smarter data structures to organize the informa-
tion required for statistical analysis. Examples of these include KD-trees
and ball-trees (Friedman, Bentley, & Finkel, 1977; Gray & Moore, 2001;
Omohundro, 1990), which allow caching of sufficient statistics over recur-
sively smaller regions of the data space, and AD-trees (Moore & Lee, 1998;
Komarek and Moore, 2000), which speed up computations involving con-
junctive queries and “counting” statistics.

KD-trees (Friedman et al., 1977) are data structures that partition the in-
put space into hyperrectangular regions. The root node contains the bound-
ing box of the entire data set, and each nonleaf node has two children that
partition the parents’ space by splitting the bounding box along its longest
dimension (see Figure 2). Splitting stops when the bounding boxes reach
a certain minimum size or when the number of points in a box reaches
a minimum value. The key computational saving results from annotating
each node of the tree with specific statistics about the data in the partition
of space rooted at that node. For example, caching the bounding box of the
data in each node allows eliminating a significant number of explicit com-
parisons when answering nearest-neighbor queries. In this way, for each
query, only a fraction of the leaves in the tree are visited, resulting in sub-
linear computational complexity for most operations that typically require
at least linear time.

A similar computational saving is achievable for kernel density estima-
tion if we are willing to sacrifice a small amount of accuracy. Given the
bounding boxes of the nodes in the KD-tree, we can bound the minimum
and maximum value of the kernel function (assuming a monotonically de-
creasing function) within a hyperrectangle. If the difference between the
minimum and maximum is less than a tolerance value ε, we can skip the
evaluation of each query point within the node and approximate it by an
average value. This achieves significant savings when the query points are
the data points themselves, as is frequently the case in settings where we
evaluate the data on kernels that are centered at the data points—so-called
N-body problems (Gray & Moore, 2001).

KD-trees suffer in higher-dimensional spaces since as the dimensionality
increases, one observes that most of the volume is concentrated in a thin
shell at the outer edges of the space. Metric trees and ball trees (Omohundro,
1990) are alternatives that are robust to high-dimensional problems. They
do not necessarily require a Euclidean space, but merely one in which the
triangle inequality holds (Moore, 2000). Because of this, we can derive sim-
ple yet computationally efficient bounds on the distances between a query
point q and any point x belonging to a ball of radius r (as Figure 3 illustrates):

‖q − x‖ ≤ | q − c‖ + r

‖q − x‖ ≥ | q − c‖ − r
.

Efficient High-Dimensional Regression 843

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

Figure 2: This figure shows the bounding boxes of the data stored at level 2
(top) and level 4 (bottom) nodes of a KD-tree. The tree is created by recursively
splitting the hyperrectangles along the median of the longest dimension of the
enclosed data. Bounding box information (as well as other statistics) is cached
at each node and helps speed up querying the structure.

844 J. Ting, A. D’Souza, S. Vijayakumar, and S. Schaal

−4 −3 −2 −1 0 1 2 3 4

−3

−2

−1

0

1

2

3

(a) Ball-tree

x

q

c

r

(b) Triangle inequality

Figure 3: (Top) The nodes at the root, first, and second levels of a ball tree
(dotted, dashed, and solid balls, respectively). (Bottom) The triangle inequality
used to derive computationally efficient bounds on the distance between an
arbitrary query point and the points within a ball.

These distance bounds are then used in a manner similar to the bounding
boxes of KD-trees to reduce the number of comparisons required to be
performed with the actual data points.

Efficient High-Dimensional Regression 845

AD-trees (Moore & Lee, 1998) are an efficient representation for statisti-
cal methods that rely on “counting” occurrences of records satisfying sets
of conjunctive queries over the record attributes. Traditional representation
schemes for such data include precomputing answers to each query, which
are stored in so-called contingency tables. Contingency tables are useful
in creating probability tables for Bayes nets and in conjunctive rule learn-
ing algorithms such as decision tree learning. Potential uses for statistical
machine translation are obvious when we use the popular TF-IDF (term-
frequency, inverse-document-frequency) representation of documents.

AD-trees allow the precomputed answers to queries that are available in
contingency tables to be stored in a fraction of the memory requirements.
For data sets in which records arrive incrementally or in which the initial
cost of constructing the AD-tree is too high, an incremental version is also
possible (Komarek & Moore, 2000).

2.3 Summary. For the purpose of comparison, we included the fol-
lowing algorithms for evaluation in our experiments: stepwise regression,
PLS regression, and LASSO regression. We omitted the other methods re-
viewed in this section due to computational drawbacks or unsuitable model
assumptions. For example, methods like joint-space factor analysis for re-
gression, principal component regression, joint-space principal component
regression, and kernel dimensionality reduction for regression require that
the latent dimensionality K be known. Estimation of this quantity for high-
dimensional data sets could be potentially very expensive due to the cross-
validation procedures needed. Additionally, principal component regres-
sion may also discard important low-variance inputs that contribute to the
output in favor of high-variance but irrelevant input dimensions since it
seeks components to maximize the variance in the input data. Backfitting
may be computationally more robust for high-dimensional inputs, but it is
unable to detect irrelevant and redundant input dimensions should these
exist in the input data. (See Schaal et al., 1998, for a more comprehensive
review of these methods.)

3 Probabilistic Backfitting

The model shown in Figure 4a generalizes our discussion in section 2 such
that the input “dimensions” of Figure 1 are replaced by arbitrary basis
functions fm(x) of the input—a model commonly known as generalized
linear regression (GLR) (Hastie & Tibshirani, 1990). Our goal remains the
same: given a data set xD = {(xi , yi)}N

i=1, we wish to determine the most
likely values of bm, which linearly combine the basis functions fm to generate
the output y.

We also noted in section 2.1.7 that the backfitting family of algorithms is
an efficient set of methods that, under the right circumstances, is extremely
robust since it requires no expensive matrix inversion and thus avoids

846 J. Ting, A. D’Souza, S. Vijayakumar, and S. Schaal

N
fd(xi)

f2(xi)

f1(xi)

yi

ψy

b

(a) Generalized Linear Regression

N

zi2

zi1

zid

f1(xi)

f2(xi)

fd(xi)

b1

b2

bd

yi ψy

(b) Probabilistic Backfitting

Figure 4: We modify the original graphical model for generalized linear regres-
sion by inserting hidden variables zim in each branch of the fan-in. This modified
model can be solved using the EM framework to derive a probabilistic version
of backfitting.

the numerical pitfalls therein. A drawback of the backfitting procedure is
that it does not stem from a generative probabilistic model, which limits
its application in current Bayesian machine learning frameworks. In this
section, we describe how a probabilistic version of backfitting can be derived
by making a simple structural modification to the graphical model for
standard generalized linear regression. The statistical model corresponding
to Figure 4a can be written as

y(x) =
d∑

m=1

bm fm(x; θm) + ε,

that is, multiple predictors fm(x; θm) (where 1 ≤ m ≤ d) that are gener-
ated by an adjustable nonlinear transformation with parameters θm and
fed linearly to an output y by an inner product with a regression vector

Efficient High-Dimensional Regression 847

b = [b1b2 · · · bd]T plus additive noise ε. As we mentioned in section 2, eval-
uation of b using the OLS solution in equation 2.2 becomes increasingly
computationally expensive and numerically brittle. Note that ridge regres-
sion can “fix” such problems numerically by stabilizing the matrix inversion
with a small, additive diagonal term. However, a ridge factor typically in-
troduces uncontrolled bias.

A simple modification of the graphical model of Figure 4a, however,
enables us to create the desired algorithmic decoupling of the predictor
functions and gives backfitting a probabilistic interpretation. Consider the
introduction of random variables zim as shown in Figure 4b. These variables
are analogous to the output of the gm function of algorithm 2 and can also be
interpreted as an unknown fake target for each branch of the regression fan-
in. For the derivation of our algorithm, we assume the following conditional
distributions for each variable in the model:

yi | zi ∼ Normal(yi ; 1T zi , ψy)

zim | xi ∼ Normal(zim; bm fm(xi), ψzm),
(3.1)

where 1 = [1, 1, . . . , 1]T . It needs to be emphasized that now, the regression
coefficients bm are behind the fan-in. With the introduction of the random
variables zim, we are essentially in a situation where we wish to optimize the
parameters φ = {{bm, ψzm}d

m=1, ψy}, given that we have observed variables
{xi , yi }N

i=1 and have unobserved variables {zi }N
i=1 in our graphical model.

This situation fits naturally into the framework of maximum likelihood
estimation via the EM algorithm.

3.1 An EM Algorithm for Probabilistic Backfitting. Given our modi-
fied statistical model represented by the graphical model of Figure 4b, we
wish to estimate the parameters bm and (possibly) optimize the individual
functions fm(x; θm) with respect to the parameters θm. This is easily formu-
lated as an EM algorithm, which maximizes the incomplete log likelihood
log p(y | X), which, from Figure 4a, can be expressed as

log p(y | X) = − N
2

log ψy − 1
2

N∑

i=1

(
yi − bT f(xi)

)2 + const. (3.2)

The EM algorithm however, operates by maximizing the expected complete
log likelihood

〈
log p(y, Z | X;φ)

〉
, where

log p(y, Z | X;φ) = − N
2

log ψy − 1
2ψy

N∑

i=1

(
yi − 1T zi

)2

−
d∑

m=1

[
N
2

log ψzm+ 1
2ψzm

N∑

i=1

(zim−bm fm(xi ; θm))2

]

+ const. (3.3)

848 J. Ting, A. D’Souza, S. Vijayakumar, and S. Schaal

As this maximization is solely based on standard manipulations of nor-
mal distributions, we omit derivations and summarize the EM update equa-
tions for bm and the noise variances ψy and ψzm as follows:

E-Step

1T�z1 =
(

d∑

m=1

ψzm

) [

1 − 1
s

(
d∑

m=1

ψzm

)]

σ 2
zm = ψzm

(
1 − 1

s
ψzm

)

〈zim〉= bm fm(xi) + 1
s
ψzm(yi − bT f(xi))

M-Step

bm =
∑N

i=1 〈zim〉 fm(xi)
∑N

i=1 fm(xi)2

ψy = 1
N

N∑

i=1

(yi − 1T 〈zi 〉)2 + 1T�z1

ψzm = 1
N

N∑

i=1

(〈zim〉 − bm fm(xi))
2 + σ 2

zm,

where we define s = ψy + ∑d
m=1 ψzm and �z = Cov(z | y, X). In addition,

the parameters θm of each function fm can be updated by setting:

N∑

i=1

(〈zim〉 − bm fm (xi ; θm)
)∂ fm (xi ; θm)

∂θm
= 0 (3.4)

and solving for θm. As this step depends on the particular choice of fm

(e.g., splines, kernel smoothers, parametric models), we will not pursue it
any further and note that any statistical approximation mechanism could
be used.

There are two observations to be made regarding the above EM algo-
rithm. First, all equations are algorithmically O(d), where d is the number
of predictor functions fm. Second, if we substitute the expression for 〈zim〉
in the maximization equation for bm, we get the following update equation
for the (n + 1)th EM cycle:

b(n+1)
m = b(n)

m + ψzm

s

∑N
i=1

(
yi −

∑d
k=1 b(n)

k fk(xi)
)

fm(xi)
∑N

i=1 fm(xi)2
. (3.5)

Efficient High-Dimensional Regression 849

Thus, in an EM cycle, the mth regression coefficient is updated by an amount
proportional to the correlation between the mth predictor and the residual
error. Each bm is updated independently (that is, independent of the other
regression coefficients b p, where p
= m for p = 1, . . . , d). In each EM cycle,
all d regression coefficients are updated.

In this way, the residual can be interpreted as forming a “fake target” for
the mth branch of the fan-in. As the next section shows, this enables us to
place the algorithm in the context of backfitting.

The matrix inversion in the OLS solution requires O(d2) if more efficient
and robust matrix inversion methods are used. In comparison, the compu-
tational complexity of the EM-based probabilistic backfitting algorithm is
O(d) per EM iteration. Should the number of EM iterations be significant,
it is true that the run time of the EM algorithm could be as long as non
iterative approaches. However, the true benefit of our iterative approach
arises when dealing with real-time applications, where decisions need to be
made quickly in a short amount of time such that an approximate solution is
acceptable. Additionally, EM-based probabilistic backfitting can be embed-
ded into other iterative methods in order to realize more computationally
efficient update equations.

3.2 Relating Traditional and Probabilistic Backfitting. To better un-
derstand how equation 3.5 can be interpreted as probabilistic backfitting,
notice that backfitting can be viewed as a formal Gauss-Seidel algorithm:
an equivalence becomes exact in the special case of linear models (Hastie
& Tibshirani, 1990). For the linear system FT Fb = FT y, the Gauss-Seidel
updates for the individual bm are

bm =
∑N

i=1

(
yi − ∑d

k
=m bk fk(xi)
)

fm(xi)
∑N

i=1 fm(xi)2
. (3.6)

Note that if used naively, equation 3.6 does not guarantee convergence at
all. The Gauss-Seidel algorithm extends the above equation by adding a
fraction (1 − ω) of bm to the update, giving us the well-known relaxation
algorithms,

b(n+1)
m = (1 − ω)b(n)

m + ω

∑N
i=1

(
yi − ∑d

k
=m bk fk(xi)
)

fm(xi)
∑N

i=1 fm(xi)2
, (3.7)

which has improved convergence rates for overrelaxation (1 < ω < 2) or
improved stability for underrelaxation (0 < ω < 1). For ω = 1, the standard
backfitting of equation 3.6 is recovered. The appropriate value of ω, which
allows the iterations to converge while still maintaining a reasonable con-
vergence rate, can be determined only by treating equation 3.6 as a discrete

850 J. Ting, A. D’Souza, S. Vijayakumar, and S. Schaal

dynamical system and analyzing the eigenvalues of its system matrix—a
task taking O(d3) (or O(d2), for more efficient methods). If, however, we set
ω = ωm = ψzm/s in equation 3.7, it can be shown (after some algebraic rear-
rangement) that we obtain our EM update in equation 3.5 exactly. Indeed,
this is a probabilistic version of backfitting.

A similar EM algorithm and model structure has been proposed in the
context of signal processing (Feder & Weinstein, 1988), but we believe this
is the first time that the connection of this probabilistic derivation to the
backfitting algorithm has been demonstrated. As we show in section 4, this
allows us to place this class of methods within a much wider framework of
Bayesian model complexity estimation.

3.3 Convergence of Probabilistic Backfitting. In general, for any maxi-
mum likelihood problem, the EM algorithm guarantees monotonic increase
in the incomplete likelihood, but does not guarantee that the final solution
is the global maximum. This section addresses the following questions:

1. What is the point of convergence of the probabilistic backfitting EM
algorithm?

2. Are there local maxima (globally suboptimal solutions) in its likeli-
hood space?

The answers to both questions depend on the fact that the incomplete
likelihood (or marginalized complete likelihood) function for linear regres-
sion in equation 3.2 has a (possibly nonunique but convex) global maximum
corresponding to the OLS solution of equation 2.2 but no local maxima.
Could the introduction of the hidden variables and additional parameters
in equation 3.3 introduce local maxima in the likelihood landscape? Note
that for examining convergence properties, we focus on only the estimation
of the parameters φ = [b, ψz1, . . . , ψzd , ψy]T , as the functions fm cannot be
treated in general without knowing their structure. We start with the as-
sumption that we have reached a stationary point φ∗ in the EM algorithm,
which implies

∂
〈
ln p(y, Z | X;φ)

〉

∂φ

∣∣∣∣∣
φ=φ∗

= 0. (3.8)

Using Jensen’s inequality, it is easy to show that for an arbitrary distri-
bution Q(Z) over the hidden variables,

ln p(y | X;φ) ≥ 〈ln p(y, Z | X;φ)〉Q(Z) + H [Q(Z)] = F(Q,φ), (3.9)

where H[·] denotes entropy. EM performs a coordinate ascent, alternately
maximizing F with respect to Q (in the E-step) and φ (in the M-step).
Differentiating F(Q,φ) with regard to φ at the stationary point φ∗, and

Efficient High-Dimensional Regression 851

noting that the entropy term H[Q(Z)] is independent of φ, gives

∂F(Q,φ)
∂φ

∣
∣
∣
∣
φ=φ∗

= ∂〈ln p(y, Z | X;φ)〉
∂φ

∣
∣
∣
∣
φ=φ∗

= 0. (3.10)

Note, however, that the preceding E-step sets Q(Z) to the true posterior
distribution p(Z | y, X;φ∗), which raises the lower bound in equation 3.9 to
an equality—ln p(y | X;φ) = F(Q,φ)—from which it follows that

∂ ln p(y | X;φ)
∂φ

∣
∣
∣
∣
φ=φ∗

= ∂F(Q,φ)
∂φ

∣
∣
∣
∣
φ=φ∗

= 0, (3.11)

that is, we have reached a maximum in the incomplete likelihood as well.
Given that the incomplete log likelihood ln p(y | X;φ) in equation 3.2 has
only a global maximum (i.e., the OLS solution), reaching the stationary
point of equation 3.8 in our EM algorithm for probabilistic backfitting must
correspond to finding the OLS solution. Therefore, probabilistic backfitting
is indeed performing true linear regression with a global optimum.

4 Variational Bayesian Least Squares

The probabilistic version of backfitting suffers from overfitting when the
input data contain many redundant or irrelevant features. To regularize its
OLS solution, we adopt a Bayesian framework and place a prior distribu-
tion over the regression coefficients b to get VBLS. As the following two
sections demonstrate, our choice of prior structure results in two different,
yet important, forms of regularization. We also discuss how we can easily
obtain confidence intervals and demonstrate how VBLS can be additionally
applied to classification problems.

4.1 Regularizing the Regression Vector Length. The graphical model
for our first form of Bayesian prior is shown in Figure 5a. We place a
gaussian prior over the regression coefficient vector b so that the variance
of the prior is controlled by a single precision parameter α. As a result, our
uncertainty in the value of this prior precision is represented by a broad
gamma distribution over α:

b | α ∼ Normal (b; 0, I/α) ,

α ∼ Gamma (α; aα,0, bα,0)
, (4.1)

where aα,0 and bα,0 are the initial hyperparameter values for the gamma
distribution over α.

Two motivations lie behind our choice of gamma prior. First, as a scale
parameter, an uninformative distribution over α must be uniform over a

852 J. Ting, A. D’Souza, S. Vijayakumar, and S. Schaal

Figure 5: By associating a single gamma distributed precision with the re-
gression vector, we create a marginal prior over b that favors minimum-norm
solutions, similar to shrinkage methods such as ridge regression.

log scale—corresponding to a Jeffreys prior (Jeffreys, 1946; Gelman, Car-
lin, Stern, & Rubin, 2000). We fulfill the requirement of an uninformative
distribution by choosing the gamma distribution parameters, aα and bα , ap-
propriately (i.e., aα, bα → 0). Second, the gamma distribution is analytically
convenient, since it is a conjugate distribution for the gaussian precision.
As the model in Figure 5a shows, our set of unobserved random vari-
ables in the model is now {b, α, {zi }N

i=1}, and we are especially interested in
obtaining posterior distributions over the random variables b and α. The

Efficient High-Dimensional Regression 853

parameters we wish to optimize are now φ = {b, {ψzm}d
m=1, ψy, aα, bα}. The

joint probability over this model extends equation 3.3 to

log p(y, Z, b, α | X;φ) = log p(y, Z, b, α | X;�z, ψy, aα, bα)

= − N
2

log ψy − 1
2ψy

N∑

i=1

(
yi − 1T zi

)2

−
d∑

m=1

[
N
2

log ψzm + 1
2ψzm

N∑

i=1

(zim − bm fm(xi ; θm))2

]

(4.2)

+ d
2

log α − α

2

d∑

m=1

b2
m + (aα,0 − 1) log α − bα,0α + const.

While the log joint posterior log Q(Z, b, α) is readily available from
equation 4.2 (up to a constant additive term), the extraction of marginal
probabilities of interest such as Q(b) and Q(α) is analytically intractable.
Therefore, we use a factorial variational approximation (Ghahramani &
Beal, 2000b; Parisi, 1988; Rustagi, 1976) to the true posterior, in which we
assume that the posterior distribution factorizes3 over the variables of in-
terest, that is, we restrict ourselves to a family of distributions of the form
Q(Z, b, α) = Q(Z)Q(b)Q(α). This procedure allows us to analytically derive
an EM-like set of update equations for the individual posterior distributions:

Q(α) = Gamma(α; âα, b̂α)

Q(b) =
d∏

m=1

Normal
(
bm;μbm , σ 2

bm

)

âα = aα,0 + d
2

b̂α = bα,0 + 〈bT b〉
2

(4.3)

σ 2
bm

=
(

1
ψzm

N∑

i=1

fm (xi)
2 + 〈α〉

)

μbm = σ 2
bm

(
1

ψzm

N∑

i=1

fm (xi) 〈zim〉
)

,

3This particular factorization causes the marginal posterior of b to be a gaussian.
An alternative (also analytically tractable) formulation Q(Z, b, α) = Q(Z)Q(b, α) is also
possible, in which the resulting marginal for b is a Student-t distribution.

854 J. Ting, A. D’Souza, S. Vijayakumar, and S. Schaal

where

〈
bT b

〉 = 〈b〉T 〈b〉 + 1T�b1,

〈b〉 = [μb1 μb2 · · · μbd]T , and �b is the posterior covariance of b (i.e., a
diagonal matrix with μbm entries on its diagonal).

The form of the Q(Z) distribution updates remains identical to that de-
rived in section 3.1, with the exception that the parameters bm are replaced
with the expectations 〈bm〉, so we shall not repeat them here. However,
substituting the expressions for 〈zim〉 in the update equations for the distri-
bution of Q(b) gives the following update for the regression coefficients,

〈bm〉(n+1) =
(∑N

i=1 fm(xi)2

∑N
i=1 fm(xi)2 + ψzm 〈α〉

)

〈bm〉(n)

+ ψzm

s

∑N
i=1

(
yi − ∑d

k=1 〈bk〉(n) fk(xi)
)

fm(xi)(∑N
i=1 fm(xi)2 + ψzm 〈α〉

) , (4.4)

where, as in section 3.1, s = ψy + ∑d
m=1 ψzm.

Comparing the solution in equation 4.4 with the result derived for prob-
abilistic backfitting in equation 3.5, we see that in the absence of correlation
between the residual error and the kth predictor fk(x)—that is, if the second
term of equation 3.5 is zero, the first term of equation 4.4 is a decaying
term. As a result, the corresponding regression coefficient 〈bm〉 will go to
zero after some number of EM iterations. This effect is similar to that of
shrinkage methods such as ridge regression.

Note that the structure of the marginal prior over the regression coeffi-
cients b in Figure 5b—that is, the marginal prior of b from equation 4.1—
suggests that solutions closer to the origin are favored. In fact, sharing the
common precision variable α across all the regression coefficients results in
a regularized solution that minimizes the norm ‖b‖2 of the entire regression
vector. This is, in fact, identical to a ridge regression solution with a single
ridge parameter. However, in our formulation, the estimation of the “cor-
rect” value of the ridge parameter is implicitly inferred without the need
for traditionally expensive cross-validation techniques.

Regularizing the regression vector length is particularly useful when
there are groups of inputs supplying redundant information (e.g., for ro-
bustness across sensors), since the regression solution tends to distribute the
responsibility for the output inference over all relevant input dimensions.

4.2 Regularizing the Number of Relevant Inputs. Modifying Figure 5a
slightly, we now place individual precision variables αm over each of the
regression parameters bm, resulting in Figure 6a. This model structure can

Efficient High-Dimensional Regression 855

Figure 6: By associating an individual gamma distributed precision with each
regression coefficient, we create a marginal prior over b that favors sparse
solutions that lie along the (hyper)-spines of the distribution.

be captured by the following set of prior distributions:

b | α ∼
d∏

m=1

Normal (bm; 0, 1/αm)

α ∼
d∏

m=1

Gamma
(
αm; aαm,0, bαm,0

)
, (4.5)

where aαm,0 and bαm,0 are the initial hyperparameter values for αm.

856 J. Ting, A. D’Souza, S. Vijayakumar, and S. Schaal

As the graphical model in Figure 6a shows, our set of unobserved vari-
ables in the model is now {b,α, {zi }N

i=1}. The modified likelihood function
can be rewritten as follows:

log p(y, Z, b, α | X;φ) = log p(y, Z, b, α | X;�z, ψy, aα, bα)

= − N
2

log ψy − 1
2ψy

N∑

i=1

(
yi − 1T zi

)2

−
d∑

m=1

[
N
2

log ψzm+ 1
2ψzm

N∑

i=1

(zim−bm fm(xi ; θm))2

]

+
d∑

m=1

[
d
2

log αm − αm

2
b2

m

]

+
d∑

m=1

{
(aαm,0 − 1) log αm − bαm,0 αm

} + const. (4.6)

Proceeding as in section 4.1, we can derive the following iterative updates
to the distributions of Q(b) and Q(α):

Q(α) =
d∏

m=1

Gamma
(
αm; âαm , b̂αm

)

Q(b) =
d∏

m=1

Normal
(
bm;μbM, σ 2

bm

)

âαm = aαm,0 + 1
2

b̂αm = bαm,0 +
〈
b2

m

〉

2

σ 2
bm

=
(

1
ψzm

N∑

i=1

fm (xi)
2 + 〈αm〉

)−1

μbm = σ 2
bm

(
1

ψzm

N∑

i=1

fm (xi) 〈zim〉
)

(4.7)

where

〈
b2

m

〉 = 〈bm〉2 + σ 2
bm

= μ2
bm

+ σ 2
bm

.

Efficient High-Dimensional Regression 857

Deriving the update equations for the mean of the regression coefficients
as we did in equation 4.4, we get

〈bm〉(n+1) =
(∑N

i=1 fm(xi)2

∑N
i=1 fm(xi)2 + ψzm 〈αm〉

)

〈bm〉(n)

+ ψzm

s

∑N
i=1

(
yi − ∑d

k=1 〈bk〉(n) fk(xi)
)

fm(xi)
(∑N

i=1 fm(xi)2 + ψzm 〈αm〉) , (4.8)

where, as in section 3.1, s = ψy + ∑d
m=1 ψzm.

The solution in equation 4.8 is almost identical to that of equation 4.4,
except now the regularization of the regression solution occurs over the
magnitude of each regression coefficient rather than the overall norm. This is
a direct effect of having individual precision variables rather than a common
precision variable. The result is a regression solution that minimizes the
number of relevant inputs required to accurately predict the output, much
like the automatic relevance detection (ARD) framework in neural networks
(Neal, 1994). This is also intuitively apparent from the marginal prior over b
shown in Figure 6b—that is, the marginal prior of b from equation 4.5, which
favors sparse solutions that lie along the (hyper-)spines of the distribution.

While the regularization discussed in section 4.1 is useful in situations
where redundant information is to be regularized but not eliminated in the
regression, this current form of regularization (i.e., regularizing the number
of inputs) is desirable when the input contains information that is irrelevant
to predicting the output.

Note that the graphical models of Figures 5a and 6a are two extremes in
a spectrum of regularization options. One can certainly conceive of models
in which groups of regression coefficients are placed under the control of in-
dividual precision parameters. This situation may make sense, for example,
when we have groups of redundant sensors providing input. It allows an ir-
relevant signal (set of sensors) to be eliminated if it does not contribute to the
output. At the same time, it allows a relevant set to exploit the redundancy
of information within its group to provide a more robust input signal.

4.3 Alternative Posterior Factorization. In sections 4.1 and 4.2, we made
the assumption that the posterior distribution factorized over the regres-
sion coefficients bm and their precisions α (or αm, in section 4.2). We can
relax this assumption if we make a small modification to the graphi-
cal model to retain analytical tractability. Figure 7a shows an alterna-
tive to Figure 5a, which can be described by the following conditional

858 J. Ting, A. D’Souza, S. Vijayakumar, and S. Schaal

Figure 7: We can relax the assumption of factorization Q(b)Q(α) between the
regression coefficients and their precision variables by modifying the graphi-
cal models as shown in this figure. The marginal posterior distribution over
the regression coefficients b can now be analytically derived as a Student
t-distribution.

distributions:

yi | zi ∼ Normal(yi ; 1T zi , ψy)

zim | bm, α, xim ∼ Normal (zim; bmxim, ψzm/α)

b | α ∼ Normal (b; 0, I/α)

α ∼ Gamma (α; aα,0, bα,0) .

(4.9)

Efficient High-Dimensional Regression 859

The dependency of zim on the precision α may seem unnecessary, but
Gelman et al. (2000) provide a justification: it is reasonable to assume that
the variance in zim scales with the variance in bm since increasing our uncer-
tainty in the prior of bm should imply a corresponding increase in the uncer-
tainty of zim as well. In this case, we will obtain a joint posterior distribution
Q(b, α), which is then marginalized to get the individual distributions Q(b)
and Q(α). The derivation proceeds in a manner similar to that described in
the previous sections. The crucial difference is that the marginal distribution
over b is now a product of Student-t distributions instead of the gaussian
distributions of sections 4.1 and 4.2. The following equations summarize
the marginal posteriors for the graphical model of Figure 7a:

Q(α) = Gamma(α; âα, b̂α)

Q(b) =
d∏

m=1

tv
(
bm;μbm , σ 2)

âα = aα,0 + Nd
2

b̂α = bα,0 +
d∑

m=1

1
2ψzm

⎡

⎣
N∑

i=1

〈
z2

im

〉 −
(

N∑

i=1

fm(xi)2 + ψzm

)−1 (
N∑

i=1

〈zim〉 fm(xi)

)2
⎤

⎦

ν = 2âα

μbm =
(

N∑

i=1

fm(xi)2 + ψzm

)−1 (
N∑

i=1

〈zim〉 fm(xi)

)

σ 2
bm

= b̂αψzm

âα

(
N∑

i=1

fm(xi)2 + ψzm

)−1

, (4.10)

where
〈
z2

im

〉 = 〈zim〉2 + σ 2
zm

.
For the case of individual precision variables αm shown in Figure 7b, we

can derive an alternative model to Figure 6a having the following posterior
distributions:

Q(α) =
d∏

m=1

Gamma
(
αm; âαm , b̂αm

)

Q(b) =
d∏

m=1

tv
(
bm;μbm , σ 2)

860 J. Ting, A. D’Souza, S. Vijayakumar, and S. Schaal

âαm = aαm,0 + N
2

b̂αm = bαm,0 + 1
2ψzm

×
⎡

⎣
N∑

i=1

〈
z2

im

〉 −
(

N∑

i=1

fm(xi)2 + ψzm

)−1 (
N∑

i=1

〈zim〉 fm(xi)

)2
⎤

⎦

ν = 2âα

μbm =
(

N∑

i=1

fm(xi)2 + ψzm

)−1 (
N∑

i=1

〈zim〉 fm(xi)

)

σ 2
bm

= b̂(m)
α ψzm

âα

(
N∑

i=1

fm(xi)2 + ψzm

)−1

, (4.11)

where
〈
z2

im

〉 = 〈zim〉2 + σ 2
zm

. This approximation can be used in conjunction
with a distribution over the noise parameter ψy to derive a form of robust
regression that is less sensitive to outliers than in our original formulation
(where the predictive distribution over the output is a gaussian).

4.4 Initialization of Parameters. A few comments should be made re-
garding the initialization of priors used for the models in sections 4.1, 4.2,
and 4.3. Specifically, the initial hyperparameter values {aα,0, bα,0}—or, for
the ARD model, {aαm,0, bαm,0}d

m=1—need to be set before running the EM al-
gorithm. We set aαm,0 and bαm,0 so that the prior distribution over αm is unin-
formative or “flat,” using values of aαm,0 = bαm,0 = 10−8, for all m = 1, . . . , d .
This means that the initial mean of αm is 1, with high uncertainty—αm has
a rather flat prior distribution. These initial hyperparameter values can be
used for all data sets and need never be modified. We use these values for
all our experiments and data sets.

4.5 Obtaining Confidence Intervals. Given any of the two versions of
VBLS, it is easy to obtain predictive distributions over regression outputs at
query points. Marginalizing over the hidden zim αm variables in the model
gives us the following distribution over y | x,D, where D is the training
data set,

p(y | x,D) = Normal(y; 〈b〉T x, ψy + 1T�z1 + xT�bx), (4.12)

where �z is the noise variance of z and �b is the posterior covariance of b.

Efficient High-Dimensional Regression 861

−10 −5 0 5 10
0

0.2

0.4

0.6

0.8

1

−10 −5 0 5 10
−14

−12

−10

−8

−6

−4

−2

0

Figure 8: (Left) The logistic function (solid thick line) and two approximations
with the variational parameters set to ξ = 3 (dashed line) and ξ = 7 (solid thin
line). The points of tangency between the true function and the approximation
are circled. (Right) The same plots on a log scale.

4.6 Extension to Classification. VBLS can be adapted to handle cat-
egorical outputs yi ∈ {−1,+1} by changing the target conditional distri-
bution p(yi | zi) to a Bernoulli distribution via the sigmoid link function
g(x) = (

1 + exp(−x)
)−1. In this case, the conditional distribution can be ex-

pressed as

p(yi | zi) = 1
1 + exp (−yi 1T zi)

= g(yi 1T zi).

Since this renders the posterior intractable due to nonconjugacy with
p(zi | xi), we follow Jaakkola and Jordan (2000) and introduce an additional
lower bound using the inequality:

g(x) ≥ g(ξ) exp
{

x − ξ

2
− ϕ(ξ)

(
x2 − ξ 2)

}
,

where ϕ(ξ) = tan(ξ/2)/4ξ and ξ is the variational parameter for the family
of lower bounds to g(x) (see Figure 8). Hence, we can lower-bound the
likelihood p(yi | zi) by the parameterized version p(yi | zi , ξi) as follows:

p(yi | zi) = g(yi 1T zi)

≥ p(yi | zi ; ξi)

= g(ξi) exp
{

yi 1T zi − ξi

2
− ϕ(ξi)

(
zT

i 11T zi − ξ 2
i

)}
. (4.13)

862 J. Ting, A. D’Souza, S. Vijayakumar, and S. Schaal

Note that this form is still an exponent of a quadratic in zi which retains con-
jugacy with p(zi | b; xi) and allows us to proceed with our EM derivation
as before—with the additional step that we must optimize the ξi param-
eters. We again start by writing out the log complete likelihood, which
is the joint distribution over the known and unknown variables in the
model:

log p(yi | zi , xi ; b, ψz)

=
N∑

i=1

log p(y | zi) +
N∑

i=1

d∑

m=1

log p(zim | xi ; bm, ψzm)

≥
N∑

i=1

p(y | zi ; ξi) +
N∑

i=1

d∑

m=1

log p(zim | xi ; bm, ψzm)

=
N∑

i=1

[
log g(ξi) + yi 1T 〈zi 〉 − ξi

2
− ϕ(ξi)

(
1T 〈

zi zT
i

〉
1 − ξ 2

i

)
]

−
d∑

m=1

[
N
2

ln ψzm + 1
2ψzm

N∑

i=1

(zim − bm fm(xi ; θm))2

]

+ const,

(4.14)

where

1T 〈
zi zT

i

〉
1 = 1T 〈zi 〉 〈zi 〉T 1 + 1T�zi 1,

and �zi is the posterior covariance of zi .
As it turns out, this additional approximation affects only the E-step

equations, which are summarized as follows:

E-Step

1T�zi 1 =
(

d∑

m=1

ψzm

) [

1 − 2ϕ(ξi)
si

(
d∑

m=1

ψzm

)]

σ 2
zim = ψzm

(
1 − 2ϕ(ξi)

si
ψzm

)

〈zim〉= bm fm(xi) + ψzm

si

(yi

2
− 2ϕ(ξi)bT f(xi)

)
,

where si = 1 + 2ϕ(ξi)1T�z1. The estimation of each ξi can be
done by differentiating the expected log likelihood with respect

Efficient High-Dimensional Regression 863

to each ξi :

∂

∂ξi

〈
ln p(y, θ | X)

〉

= ∂

∂ξi

[
ln g(ξi) + yi 1T 〈zi 〉 − ξi

2
− ϕ(ξi)

(
1T 〈

zi zT
i

〉
1 − ξ 2

i

) + constξi

]

= 1 − g(ξi) − 1
2

+ 2ξiϕ(ξi)
︸ ︷︷ ︸

=0

−∂ϕ(ξi)
∂ξi

(
1T 〈

zi zT
i

〉
1 − ξ 2

i

)
.

Hence the likelihood is maximized by solving

∂ϕ(ξi)
∂ξi

(
1T 〈

zi zT
i

〉
1 − ξ 2

i

) = 0,

which has solutions at ∂ϕ(ξi)/∂ξi = 0 and at ξ 2
i = 1T

〈
zi zT

i

〉
1. One can show

that the solution ∂ϕ(ξi)/∂ξi = 0 occurs for the value ξi = 0 and actually
corresponds to a minimum rather than a maximum of the expected log
likelihood. Hence we have the admissible solutions for ξi being

ξi = ±
√

1T
〈
zi zT

i

〉
1.

The sign of ξi can be chosen arbitrarily, since the likelihood is an even
function of ξi , that is, both solutions result in the likelihood taking the same
maximal value (cf. Figure 8). Importantly, the O(d) complexity of all update
equations is preserved even in the extension to categorical output data,
making backfitting for classification an equally robust and efficient tool as
its regression counterpart.

4.6.1 Bayesian Extension. Given that the functional approximation of
equation 4.13 allows us to retain the conjugacy necessary for an analytical
treatment, the Bayesian extensions of section 4 are straightforward to apply
to our classification model. For the case in which we have a common shared
precision parameter α across all regression parameters (cf. section 4.1), the
bm variables still have a posterior gaussian with the mean update as follows:

〈bm〉(n+1) =
(∑N

i=1 fm(xi)2

∑N
i=1 fm(xi)2 + ψzm 〈α〉

)

〈bm〉(n)

+
ψzm

∑N
i=1

1
si

(yi
2 − 2ϕ(ξi)〈b〉(n)T

f(xi)
)

fm(xi)
(∑N

i=1 fm(xi)2 + ψzm 〈α〉) .

864 J. Ting, A. D’Souza, S. Vijayakumar, and S. Schaal

For the case in which we have an individual precision parameter αm

over each regression parameter (cf. section 4.2), the bm variables again have
a posterior gaussian with the mean update as follows:

〈bm〉(n+1) =
(∑N

i=1 fm(xi)2

∑N
i=1 fm(xi)2 + ψzm 〈αm〉

)

〈bm〉(n)

+
ψzm

∑N
i=1

1
si

(yi
2 − 2ϕ(ξi)〈b〉(n)T

f(xi)
)

fm(xi)
(∑N

i=1 fm(xi)2 + ψzm 〈αm〉) . (4.15)

Importantly, the extension of VBLS to categorical output data preserves the
O(d) complexity of all update equations.

5 Extensions to Nonlinear Regression

While we derived VBLS in section 4 in the context of a linear model, it can
also be used for supervised learning in nonlinear settings. In this section,
we first discuss the relevance vector machine (RVM), a sparse Bayesian
learning algorithm that operates in a framework similar to generalized
linear regression.

The support vector machine (SVM; Cortes & Vapnik, 1995) is a common
and popular method for classification problems, but it can be extended
to regression, resulting in support vector regression (SVR). We show that
the RVM serves as an alternative to SVR and can be derived as a highly
efficient sparse algorithm with VBLS at its core. In section 6, we illustrate the
computational advantages of this VBLS-RVM algorithm on experimental
synthetic and real data sets.

5.1 Relevance Vector Machine (RVM). Introduced by Bishop and
Tipping (2000) and Tipping (2001), the RVM uses the following generative,
model,

y(x; b) =
N∑

i=1

bi k (x, xi) + ε, (5.1)

where k (x, xi) is a bivariate kernel function. The RVM creates N basis func-
tions by centering a kernel function on each training data point xi , and these
are linearly combined by a regression vector b to generate the prediction.

As in SVR, the goal of the RVM is accurate prediction of the target
function while retaining as few basis functions as possible in the linear
combination. That is, one hopes that the regression vector b remains as
sparse as possible (as in the framework of sparse Bayesian learning). This
can be achieved by introducing prior distributions over each element of b,
as discussed in section 4.2. The RVM’s success at sparsifying the regression

Efficient High-Dimensional Regression 865

solution hinges on the fact that this form of prior favors solutions that lie
along the hyperspines of the distribution. The introduction of hyperparam-
eters makes it impossible to obtain exact analytical posteriors (i.e., they are
intractable). Nevertheless, we can obtain successful approximate solutions
(albeit iteratively) by using the Laplace method (Tipping, 2001) or factorial
variational approximations (Bishop & Tipping, 2000). Both of these approx-
imations require hyperparameter updates for α that need reestimation of
the posterior covariance and mean of b as

�b =
(

diag (〈α〉) +
〈

1
ψy

〉 N∑

i=1

ki kT
i

)−1

(5.2)

μb =
(

1
ψy

)
�b

N∑

i=1

ki yi , (5.3)

where ki ≡ [k (x1, xi) , . . . , k (xN, xi)]T and ψy is the noise variance in the
targets y. This requires an O(N3) Cholesky decomposition after each hyper-
parameter update. As the number of data samples increases, the RVM faces
an explosion in the computational requirements, similar to that observed in
gaussian processes and support vector machines. Indeed, as a generalized
linear problem, each new data point adds an extra “dimension” to the input.
Tipping (2001) mentions several enhancements to the algorithm, including
pruning of unneeded basis functions, which may help speed up the RVM
estimation. However, the crux of the problem remains that the expensive
linear regression step must be performed after each hyperparameter update.

5.2 Variational Bayesian Least Squares RVM. We have so far not com-
mented on the nature of the basis functions fm(x) in our model. Let us now
switch to the RVM framework described above, where N basis functions are
created by centering a bivariate kernel function k(x, x′) on each individual
data point. This implies

fm(·) = k(·, xm),

where 1 ≤ m ≤ d and d = N. Notice that this transformation makes our
VBLS model of Figure 6a equivalent to the RVM model discussed in sec-
tion 5.1, with the notable difference that VBLS offers a significant advantage
over the standard RVM in computational complexity. Note that while the
computational complexity of a VBLS update is linear in the dimensionality
of the problem, it is also linear in the number of data points, that is, O(Nd).
When cast into the RVM framework, using d = N decreases the complexity
from the O(N3) of RVM to O(N2). In particular, we emphasize the following:

� At each update of the αm hyperparameters, the RVM requires an O(N3)
Cholesky decomposition to reestimate the regression parameters,

866 J. Ting, A. D’Souza, S. Vijayakumar, and S. Schaal

––
–

–

–

–

–

– – –

Figure 9: The VBLS-RVM solution to fitting data from the “sinc” function. Note
that out of 50 data points, only 5 are considered “relevant.” The retained basis
functions (corresponding to the relevant points, indicated by black circles) are
shown superimposed.

while discarding the estimate at the previous iteration. In the VBLS-
RVM, however, the existing estimate of the regression parameters
provides a good starting estimate, allowing the update to complete in
just a handful of O(N2) iterations (approximately 10 iterations were
sufficient in our simulations). The savings in computation are espe-
cially evident when the number of data points (and hence the effective
dimensionality) is large and when the hyperparameters require many
updates before convergence.

� In the initial computations within the graphical model, it seems waste-
ful to spend large amounts of computation on estimating parame-
ters accurately, when surrounding parameters (and hyperparameters)
have not converged. One can structure the VBLS updates to work with
partially converged estimates, such that the brunt of computation is
expended only to accurately estimate a variable when one is more
confident about the variables in its Markov blanket.

As an illustrative example, Figure 9 shows results from using VBLS-RVM
to fit a toy data set. This synthetic data set was generated using the one-
dimensional sinc function sinc(x) = sin(x)/x, using the gaussian kernel:

k(xi , xj) ≡ exp{−λ
(
xi − xj

)2},
where λ > 0.

Efficient High-Dimensional Regression 867

Although VBLS-RVM is an order of magnitude faster than the standard
RVM, it suffers no penalty in generalization error or in its ability to sparsify
the set of basis vectors. More details on this are presented in section 6.3,
where we compare the generalization performance of VBLS-RVM on a sinc
function approximation problem to other competitive nonlinear regres-
sion techniques such as the RVM, SVR, gaussian process (GP) regression
(Williams & Rasmussen, 1996), and locally weighted projection regression
(LWPR) (Vijayakumar & Schaal, 2000).

Note that Tipping (2001) proposes an optimization of the distance metric
λ, based on gradient ascent in the log likelihood. We can also compute such
a gradient for VBLS-RVM as

∂〈log p(y, Z | X)〉
∂λ

=
N∑

j=1

b j

ψzj

N∑

i=1

(〈zi j 〉 − b j ki j)(xi − xj)2ki j , (5.4)

where ki j = k
(
xi , xj

)
. Based on our experience, however, we caution against

unconstrained maximization of the likelihood, especially over distance met-
rics. Instead, we recommend the route taken in the gaussian process com-
munity: treat these variables as hyperparameters and place prior distribu-
tions over them. Since exact solutions are typically intractable, we can either
optimize them by using maximum a posteriori estimates (MacKay, 1999) or
by Monte Carlo techniques (Williams & Rasmussen, 1996).

Note that there are several optimizations suggested by Tipping (2001)
and Tipping and Faul (2003). These include pruning the basis functions
when their precision variables indicate that they are unneeded and adopt-
ing a greedy (but potentially suboptimal) strategy in which the algorithm
starts with a single basis function and adds candidates as necessary. We em-
phasize that our implementation of VBLS-RVM performs neither of these
optimizations, although they are easy to introduce into our framework.

In the next section, we demonstrate experimentally on synthetic and
real data sets that VBLS-RVM possesses a significant computational ad-
vantage over the RVM, while retaining the accuracy and sparseness of
the standard RVM. It should be noted that in the RVM, each update of
the hyperparameters requires a subsequent full matrix inversion to com-
pute the posterior distribution over the regression parameters. In contrast,
VBLS-RVM requires no matrix inversion. Moreover, each update of the hy-
perparameters causes the distribution over the regression coefficients to
shift by only a small amount. VBLS-RVM performs especially well in these
circumstances since it can use the current (partially good) solution and can
update the regression coefficient distributions within a very small number
of iterations rather than requiring a complete recalculation of the matrix
inverse.

868 J. Ting, A. D’Souza, S. Vijayakumar, and S. Schaal

6 Experimental Results

We evaluate VBLS on synthetic and real data sets on both regression and
classification problems, comparing it to other standard methods in order to
show its competitive performance and computational advantage. First, we
run VBLS on a synthetic data set where ground truth is known, in order
to better evaluate its performance in a controlled setting. Then we apply
VBLS, along with other standard methods, on neurophysiological data sets.
Specifically, we would like to predict the electromyographic (EMG) activity
of muscles from the neural data recorded in the primary motor (M1) cortices
of monkeys, under the assumption that the relationship between neural and
muscle activity is approximately linear.

We then move on to benchmark regression and classification data sets. We
evaluate the generalization ability of VBLS-RVM along with state-of-the-art
regression tools on popular nonlinear regression benchmark data sets. The
algorithms discussed in section 2 are meant for linear regression problems
and, hence, are unsuitable for these nonlinear regression benchmark data
sets. Instead, we will compare VBLS-RVM to common nonlinear regression
methods such as the RVM, SVR, gaussian process (GP) regression (Williams
& Rasmussen, 1996), and locally weighted projection regression (LWPR)
(Vijayakumar & Schaal, 2000).

Finally, we evaluate VBLS-RVM on benchmark classification problems.
We compare the performance of VBLS-RVM to that of standard classification
methods such as the RVM classifier and the SVM. Since the benchmark data
sets that we consider involve two-class problems, we also include logistic
regression for comparison since it is suited for classification problems with
only two classes. Even though the algorithms surveyed in section 2 are for
regression problems and could be augmented, making them suitable for
classification problems by passing the outputs through a sigmoid function,
we omit comparisons to them, choosing to draw comparisons between
classifiers instead.

6.1 Synthetic Data

6.1.1 Data Sets. We generated random input training data consisting of
100 dimensions, 10 of which were relevant dimensions. The other 90 were
either irrelevant or redundant dimensions, as we explain below. Each of the
first 10 relevant input dimensions was drawn from a Normal(0, 1) distri-
bution. We then applied a random 10-dimensional rotation matrix to create
input data with dimensions that are linear combinations of the original (un-
rotated) 10-dimensional data. The output data were then generated from
the relevant input data using the vector b ∈ �10×1, where each coefficient
of b, bm, was drawn from a Normal(0, 100) distribution. Noise of varying
levels was added to the outputs.

Efficient High-Dimensional Regression 869

Noise in the outputs was parameterized with the coefficient of determi-
nation, r2, of standard linear regression, defined as

r2 =
(
σ 2

y − σ 2
res

)

σ 2
y

,

where σ 2
y is the variance of the outputs and σ 2

res is the variance of the residual
error. We added noise scaled to the variance of the noiseless outputs ȳ such
that σ 2

noise = cσ 2
ȳ , where c = 1

r2 − 1. Results are quantified as normalized
mean squared errors (nMSE), that is, the mean squared error on the test
set normalized by the variance of the outputs of the test set. Note that the
best normalized mean squared training error that can be achieved by the
learning system under this noise level is 1 − r2, unless the system overfits
the data. We used a value of r2 = 0.8 for high-output noise and a value of
r2 = 0.9 for lower-output noise.

A varying number of redundant data vectors was added to the input
data, generated from random convex combinations of the 10 relevant vec-
tors. Finally, we added irrelevant data columns, drawn from a Normal(0,1)
distribution, until 100 input dimensions were reached, generating training
input data that contained irrelevant and redundant dimensions.

We created the test data set in a similar manner except that the input data
and output data were left noise free. For our experiments, we considered a
synthetic training data set with N = 1000 data samples and a synthetic test
data set with 20 data samples. We examined the following four combina-
tions of redundant, r , and irrelevant, i , input dimensions in order to better
analyze the performance of the algorithms on different data sets:

1. r = 0, i = 90 (all the 90 input dimensions are irrelevant).
2. r = 30, i = 60.
3. r = 60, i = 30.
4. r = 90, i = 0 (all the 90 input dimensions are redundant).

6.1.2 Methods. We compared VBLS to four other methods that were de-
scribed in section 2: ridge regression, stepwise regression, PLS regression,
and LASSO regression. For ridge regression, we introduced a small ridge
parameter value of 10−10 to avoid ill-conditioned matrix inversions. We
used Matlab’s “stepwisefit” function to run stepwise regression. The num-
ber of PLS projections for each data set fit was found by leave-one-out
cross-validation. Finally, we chose the optimal tuning parameter in LASSO
regression using k-fold cross-validation.

6.1.3 Results. For evaluation, we calculated the prediction error on noise-
less test data, using the learned regression coefficients from each technique.
Results are quantified as normalized mean squared errors (nMSE). Figure 10

870 J. Ting, A. D’Souza, S. Vijayakumar, and S. Schaal

(a) Training data with low output noise (r2 = 0.9)

(b) Training data with low output noise (r2 = 0.8)

r = 0, i = 90 r = 30, i = 60 r = 60, i = 30 r = 90, i = 0
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

n
M

S
E

All 90 dimensions
redundant

All 90 dimensions
irrelevant

r = 0, i = 90 r = 30, i = 60 r = 60, i = 30 r = 90, i = 0
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07
n

M
S

E

Ridge Regression STEP PLS LASSO VBLS

All 90 dimensions
redundant

All 90 dimensions
irrelevant

Figure 10: Average normalized mean squared prediction error for synthetic
100-input-dimensional data, averaged over 10 trials. The number of redundant
dimension is denoted by r , and the number of irrelevant dimensions is i .

shows the average prediction error for noiseless test data, given training
data where the output noise is either low (r2 = 0.9) or high (r2 = 0.8).

All the algorithms were executed on 10 randomly generated sets of data.
The predictive nMSE results reported in Figure 10 were averaged over the
10 trials. Note that the best training nMSE values possible under the two
noise conditions are 0.1 for the low-noise case and 0.2 for the high-noise

Efficient High-Dimensional Regression 871

case. The training nMSE values were omitted for both graphs, since all
algorithms attained training errors that were around the lowest possible
values.

From Figures 10a and 10b, we see that regardless of output noise level,
VBLS achieves either the lowest predictive nMSE value or a predictive
nMSE value comparable to that of the other four algorithms. In general, as
the number of redundant input dimensions increases and the number of
irrelevant input dimensions decreases, the prediction error improves (i.e., it
decreases). This may be attributed to the fact that redundancy in the input
data provides more “information,” making the problem easier to solve.

The performance of stepwise regression degrades as the number of re-
dundant dimensions increases, as shown in Figures 10a and 10b, due to its
inability to cope with collinear data. LASSO regression appears to perform
quite well, compared to PLS regression and ridge regression, confirming
previously published results that it can produce robust sparse regression
solutions.

In summary, we can confirm that VBLS performs very well—as well
as or better than classical robust regression methods (such as LASSO) on
synthetic tests. Interestingly, PLS regression and ridge regression are signif-
icantly inferior in problems that have a large number of irrelevant dimen-
sions. Stepwise regression has deteriorated performance as soon as colinear
inputs are introduced.

6.2 Predicting EMG Activity from Neural Firing

6.2.1 Data Sets. We analyzed data from two different neurophysiologi-
cal experiments (Sergio & Kalaska, 1998; Kakei, Hoffman, & Strick, 1999)
involving monkeys trained to perform different arm movements while hav-
ing their M1 neural firing rates and EMG activity recorded. The first exper-
iment (Sergio & Kalaska, 1998) consisted of a monkey that applied either
a movement or isometric force to a manipulandum in a center-out task in
eight directions, equally spaced in a horizontal planar circle. They recorded
neural activity of 71 M1 neurons in all conditions, along with the EMG
outputs of 11 muscles, resulting in 2320 data samples for each neuron-
muscle pair. In the second experiment (Kakei et al., 1999), a monkey was
trained to perform eight different combinations of wrist flexion-extension
and radial-ulnar movements while in three different arm postures. The data
set consisted of neural data of 92 M1 neurons that were recorded at all three
wrist postures, along with the resulting EMG outputs of seven contribut-
ing muscles, resulting in 2616 data samples for each neuron-muscle pair.
In all experiments, each data sample consisted of the average firing rates
from a particular neuron (averaged over a window of 10 msec) and the
corresponding EMG activation from a particular muscle.

The goal of the analysis was to determine how well VBLS compares
to other techniques when reconstructing EMG data of each muscle. The

872 J. Ting, A. D’Souza, S. Vijayakumar, and S. Schaal

relationship between neural and muscle activity is assumed to be linear,
such that the basis functions in VBLS are simply a copy of the respective
input dimensions: fm(x) = xm.

6.2.2 Methods. To analyze the data set, we applied VBLS, as described
in section 4.2, along with a selection of methods discussed in section 2:
ridge regression, stepwise regression, PLS regression, and LASSO regres-
sion. We omitted the other methods due to unsuitable model assumptions
or computationally expensive procedures.

A baseline comparison of good EMG construction was obtained through
a limited combinatorial search over possible regression models. This ap-
proach served as our baseline study (referred to ModelSearch in the figures)
and served as our gold standard, with a particular model being character-
ized by the subset of neurons used to predict the EMG data. For a data set
with n neurons, the number of possible models that exist for a particular
muscle is

n∑

m=1

(
n
m

)
= 2n − 1,

since the order of contributing neurons is not important (only combina-
tions not permutations of neurons are considered). The number of possible
models given in the expression above is too large for an exhaustive search.
As a result, for ModelSearch, we considered all possible combinations of
neurons of up to a subset of the total number of neurons in the data set. For
example, we considered only possible combinations of up to 20 neurons
for the Sergio and Kalaska (1998) data set to give 220 − 1 possible mod-
els instead of the full, exhaustive 271 − 1 possible models to search over.
Even so, ModelSearch required several weeks of computation on a 30-node
cluster computer. We determined the optimal predictive subset of neurons
using cross-validation4 and used ordinary least squares regression to calcu-
late the training and generalization performance. For both the Sergio and
Kalaska (1998) and Kakei et al. (1999) data sets, the cross-validation proce-
dure used in the baseline study (ModelSearch) was used to determine the
optimal subset of neurons and was done in the context of the behavorial
experiments and not in a statistically randomized way. While we realize
cross-validation has a danger of overfitting, the purpose of ModelSearch
is to serve as a method for comparison to evaluate the performance of all
algorithms and to give some indication of a baseline performance that is

4Eight-fold cross-validation was used for the Sergio and Kalaska (1998) data set (with
a training set consisting of 50% of data and two test sets containing 25% of the data each).
Six-fold cross-validation sets were used for the Kakei et al. (1999) data set (with the data
split evenly between a training set and a test set).

Efficient High-Dimensional Regression 873

Table 1: Percentage of M1 Neuron Matches Between the Baseline and All Other
Algorithms, Averaged over All Muscles in Each Data Set.

Data Sets STEP PLS LASSO VBLS

Sergio and Kalaska (1998) M1 neural data set 7.2% 7.4% 6.4% 94.2%
Kakei et al. (1999) M1 neural data set 65.1 42.9 80.6 94.3

achievable using a crude combinatorial search of a subset of models. We
compared ModelSearch with ridge regression, stepwise regression, PLS re-
gression, LASSO regression, and VBLS. We used the same validation sets
for these five algorithms as in ModelSearch in order to perform a consistent
comparison.

For ridge regression, we introduced a small ridge parameter value of
10−10 to avoid illconditioned matrix inversions. We used Matlab’s stepwis-
efit function for stepwise regression. The number of PLS projections for
each data fit was found by leave-one-out crossvalidation. Finally, the op-
timal value of the open parameter in LASSO regression was chosen using
cross-validation.

The baseline method ModelSearch identified a subset of neurons as rel-
evant. Table 1 shows the percentage match of relevant neurons found by
the algorithms, relative to the relevant neurons found by ModelSearch. The
final set of relevant neurons used in Table 1 was reached by each algorithm
(except VBLS) by taking the common neurons found to be relevant over
the eight cross-validation sets for the Sergio and Kalaska (1998) data set (or
six cross-validation sets for the Kakei et al. (1999) data set). The relevant
neurons found by VBLS and reported in Table 1 were obtained by using the
entire data set since VBLS does not require the data be divided into separate
training or test sets.

Inference of relevant neurons in PLS was based on the subspace spanned
by the PLS projections, while relevant neurons in VBLS were inferred from
the magnitude of the α vector (the corresponding αm of an irrelevant input
dimension m would have an extremely large value compared to the α val-
ues of the relevant dimensions such that we can use a threshold value to
find irrelevant dimensions).5 The number of relevant neurons from step-
wise regression and LASSO regression, were determined from the inputs
that were included in the final model. Note that since ridge regression re-
tained all input dimensions, this algorithm was omitted in relevant neuron
comparisons.

5If we choose to factor the marginal posterior so that Q(Z, b, α) = Q(Z)Q(b, α) such
that the marginal distribution for b is a Student-t distribution, then we can perform t-tests
on the regression coefficients to find relevant dimensions, using a significance of p < 0.05.
Refer to Ting et al. (2005) for details.

874 J. Ting, A. D’Souza, S. Vijayakumar, and S. Schaal

(a) Sergio and Kalaska (1998) M1 neural data

(b) Kakei et al. (1999) M1 neural data

Training nMSE Test NMSE
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

n
M

S
E

Ridge Regression

STEP

PLS

LASSO

VBLS ModelSearch

Training nMSE Test NMSE
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

n
M

S
E

Figure 11: Average normalized mean squared error for M1 neurons, averaged
over all cross-validation sets and over all muscles. Six-fold cross-validation was
used for the Kakei et al. (1999) M1 neural data set, and eight-fold cross-validation
was used for the Sergio and Kalaska (1998) M1 neural data set.

6.2.3 Results. Figure 11 shows that EMG traces appear to be generally
well predictable from M1 neural firing. In particular, VBLS had a general-
ization error comparable to that of the baseline study. Figure 12 illustrates
the EMG trace predicted by VBLS for a sample muscle (muscle 7) from
the Sergio and Kalaska (1998) neural data set. Figure 11b shows that all
algorithms achieve similarly low prediction errors on the Kakei et al. (1999)
neural data set. On the Sergio and Kalaska (1998) data set, however, ridge
regression, stepwise regression, LASSO regression, and PLS performed far
worse, with ridge regression attaining the worst error. The difference be-
tween prediction errors on both neural data sets suggests that the Sergio
and Kalaska (1998) neural data set is somehow much richer and, hence,
more challenging to analyze.

Efficient High-Dimensional Regression 875

1 2320

1

2

3

4

5

6

Time

E
M

G

Actual v/s Predicted EMG (Muscle 7)

measured
predicted

Figure 12: VBLS predicts muscle activity from neural firing rate for muscle 7
from the Sergio and Kalaska (1998) M1 neural data set.

Note that the average number of relevant M1 neurons found by VBLS,
averaged over all 11 muscles in the Sergio and Kalaska (1998) data set and
averaged over all 7 muscles in the Kakei et al. (1999) data set, was slightly
higher than ModelSearch.6 This is hardly surprisingly given that Mod-
elSearch did not consider all possible combinations of neurons in both neu-
ral data sets. In contrast, VBLS considered all 71 neurons in the Sergio and
Kalaska (1998) data set and all 92 neurons in the Kakei et al. (1999) data set.

Table 1 compares how the various methods fare in terms of finding rel-
evant neurons, using the results of ModelSearch as a baseline comparison.
As a result, a higher percentage match in the table does not necessarily
mean that the method should result in a lower prediction error. Regardless,
we see from Table 1 that the relevant neurons identified by VBLS coincided
at a very high percentage with those of ModelSearch, while PLS regression
and stepwise regression had inferior outcomes.

LASSO regression matched a high percentage of relevant M1 neurons
in the Kakei et al. (1999) data set but failed to perform as well on the
Sergio and Kalaska (1998) data set. As an aside, it is possible to use VBLS
as a preprocessing step to reduce the search space of possible models for
ModelSearch to consider.

The consistent and good generalization properties of VBLS on all neural
data sets, as shown in Figures 11a and 11b, suggest that the Bayesian ap-
proach of VBLS sufficiently regularizes the participating neurons such that
no overfitting occurs, despite finding a larger number of relevant neurons.
The performance of VBLS on these particularly difficult data sets shows
that it is a viable alternative to traditional generalized linear regression

6More details on the neural interpretation of this analysis can be found in Ting et al.
(2005).

876 J. Ting, A. D’Souza, S. Vijayakumar, and S. Schaal

tools. Even with the additional Bayesian inference for ARD, it maintains its
algorithmic efficiency since no matrix inversion is required. While VBLS is
an iterative statistical method, which performs more slowly than classical
“one-shot” linear least squares methods (i.e., on the order of several minutes
for the data sets in our analysis on a standard PC),7 it achieved comparable
results with our baseline combinatorial model search, which took weeks on
a cluster computer.

6.3 Benchmark Regression Problems

6.3.1 Data Sets. To evaluate the generalization ability of VBLS-RVM,
we compared it to other state-of-the art nonlinear regression tools on the
following benchmark data sets:

� Synthetic sinc data set (generated in the same way as Tipping, 2001)
� Boston Housing data set
� Abalone data set8

� Netflix Prize data set9

The sinc data set was constructed to have 100 uniformly spaced samples
in [−10, 10] and uniform noise in [−0.2, 0.2] was added to the targets. The
Boston Housing data set had 14 attributes and was split randomly in 10
different random splits into a training set of 404 samples and a test set of
102 samples (e.g., 20% of data used for test and the rest for training). The
Abalone data set had 10 attributes and was downsampled to 10 disjoint
sets, also with 20% of the data randomly selected for test and the remainder
for training (3327 samples for training and 850 samples for test).

The Netflix Prize data set consisted of 17,770 movies and 480,189 cus-
tomers, with each movie having reviews submitted by a small subset of
customers. Each review consisted of a rating (from 0 to 5 stars) and the
date that the review was made. Customers were identified with a unique
customer identification number. Movies were also identified with a unique
movie identification movie, with titles of movies additionally available. The
data set was downsampled so that only 355 movies and 1412 customers
were randomly selected.

We formulated the Netflix Prize problem as a linear regression problem
in order to see how simple linear methods performed on a real-world,
complex data set and also to compare VBLS to the other methods. The
goal was to predict the rating that a customer c gives to a movie m, given
we have access to all the ratings movie m has received and all the ratings
customer c has made. The downsampled data consisted of 7249 samples,

7Pentium IV class machine, 1.7GHz.
8Both the Boston housing and Abalone data sets are available from the UCI Repository.
9The data set is available online from http://www.netflixprize.com.

Efficient High-Dimensional Regression 877

Table 2: Average Normalized Mean Squared Error over 10 Trials of RVM, SVR,
GP Regression, LWPR, and VBLS-RVM on Benchmark Regression Data Sets.

Data Sets RVM SVR GP LWPR VBLS-RVM

Sinc 0.0134 0.0178 0.0136 0.0124 0.0130
Boston 0.0882 0.1115 0.0806 0.0846 0.0837
Abalone 0.4591 0.4830 0.4440 0.4056 0.4473

with each sample consisting of a 1767-dimensional input vector (i.e., all the
ratings that movie m received from each customer and all the ratings made
by customer c—this gives 1412 + 355 or 1767 elements in the input vector)
and an output scalar (i.e., the number of stars that customer c gave to movie
m). 10% of the downsample data was used for test, while the remaining was
used for training (6524 training samples and 725 test samples).

6.3.2 Methods. For all the benchmark data sets (except for the Netflix
Prize data set), we compared VBLS-RVM with other algorithms suited for
nonlinear regression such as the standard RVM, SVR,10 gaussian process
(GP) regression, and locally weighted projection regression (LWPR). Both
VBLS-RVM and the RVM used gaussian kernels with distance metrics opti-
mized by five-fold cross-validation. The gaussian process regression algo-
rithm used a radial basis function (RBF) covariance function with automatic
hyperparameter optimization.

For the Netflix Prize problem, we evaluated the following linear methods
that were previously evaluated in sections 6.1 and 6.2: ridge regression, step-
wise regression, PLS regression, LASSO regression (using the Gauss-Seidel
method of (Shevade & Keerthi, 2003), in order to accommodate the size of
the data), and VBLS. Note that the number of optimal projection directions
to use in PLS regression (i.e., the parameter K described in section 2.1.6)
was set to 20 after much user tuning—numbers larger than this took far too
long to run. Additionally, the number of steps for stepwise regression was
capped to 100. Larger step values were explored, but the running time was
excessively long, with poorer generalization performance.

6.3.3 Results. Table 2 shows the normalized mean squared errors on
the test sets averaged over 10 experimental trials. We can see that VBLS-
RVM provides an extremely competitive solution in terms of generalization
ability when compared to other popular regression methods.

In order to examine the level of “sparsification” of the set of basis func-
tions, we compared the average number of basis functions retained by the
RVM, SVR, and VBLS-RVM since these three methods had the ability to

10RVM and SVR results adapted from Tipping (2001).

878 J. Ting, A. D’Souza, S. Vijayakumar, and S. Schaal

Table 3: Number of “Relevant” Vectors Retained by RVM, SVR, and VBLS-RVM
for Benchmark Regression Data Sets.

Data Sets RVM SVR VBLS-RVM

Sinc 6.7 45.2 4.8
Boston 39 142.8 57.4
Abalone 437 1320 368

Table 4: Average Computation Time in Seconds for RVM and VBLS-RVM on
Benchmark Regression Data Sets.

Data Sets RVM VBLS-RVM Ntraining Ntest d

Sinc 18.71 sec 6.24 sec 100 100 1
Boston 372 sec 155 sec 404 102 13
Abalone 2767 sec 428 sec 3327 850 10

Note: Ntrain, Ntest, and d are the number of training samples, test samples, and input
dimensionality, respectively.

retain “relevant” samples. Table 3 shows the average number of relevant
samples (known as “relevant vectors” in the RVM) retained in the final solu-
tion (averaged over all 10 experimental trials) on the sinc, Boston Housing,
and Abalone data sets.

The experiments demonstrate that VBLS-RVM is a competitive regres-
sion solution when compared to other current state-of-the-art statistical
methods in both its generalization ability and efficacy as a sparse Bayesian
learning algorithm. However, the main advantage of VBLS-RVM is in its
computation time relative to the RVM. We compare the execution time of
the RVM to VBLS-RVM in order to examine how much speed is gained by
incorporating VBLS into the RVM. Table 4 gives the average execution time
in seconds required by the RVM and VBLS-RVM for convergence of their
regression parameter estimates on the sinc, Boston Housing, and Abalone
data sets. The table also shows the number of training samples Ntraining the
number of test samples Ntest, and the dimensionality of the inputs d . Note
that the number of O(N2) updates to b per update cycle of the hyperparam-
eters is very small (around 10 updates), since the solution from the previous
update cycle is a very good starting point for the iterations of the next cy-
cle. The results demonstrate that the RVM can significantly gain from the
iterative nature of the VBLS generalized linear regression procedure.

The baseline method, Cinematch, used for comparison in the Netflix
Prize competition, reported a predictive, root mean squared error values
(RMSE) of 0.9514 on a quiz (unknown) test subset.11 Table 5 shows the

11The Netflix Prize competition offers a grand prize for a rmse achieved that is ≤
0.8563.

Efficient High-Dimensional Regression 879

Table 5: RMSE of Ridge Regression, Stepwise Regression, PLS Regression,
LASSO Regression, and VBLS on a Downsampled Version of the Netflix Prize
Data Set.

Training RMSE Test RMSE Time Taken

Cinematch (baseline) NA 0.9514b NA
Ridge regression 0.7527 18.59 5.83 sec
Stepwise regression 13.39 6.375 1140 sec
PLS regressiona 0.9399 1.3280 247.4 sec
LASSO regression 0.9999 1.0594 8.872 sec
VBLS regression 1.0219 1.0443 104.7 sec

Notes: The downsampled data set has 6524 training samples and 725 test samples, with
an input dimensionality of 1767. Computation time for training is shown in seconds.
aIn the interest of constraining the running time, the maximum number of projections
was capped at 20.
bThe results reported by the baseline, Cinematch, is on a separate test subset, as provided
by the Netflix Prize competition.

predictive RMSE for all five linear methods evaluated. We can see that the
best performance of a linear method is actually not so far off from the base-
line performance of Cinematch—although the test sets used are different,
so such a comparison cannot be fairly made. VBLS had a comparable per-
formance to LASSO regression but took a longer time to train than the other
linear methods. However, unlike the other methods, with the exception of
LASSO regression, whose training times were reported after the optimal
values of open parameters were set or determined, VBLS did not have any
open parameters to be set or cross-validated and performed “out of the box.”

6.4 Benchmark Classification Problems

6.4.1 Data Sets. We also evaluated the classification accuracy of the RVM,
SVM, and VBLS-RVM on some benchmark data sets. To facilitate compar-
ison, we trained and tested VBLS-RVM on exactly the same data used in
Tipping (2001), along with an additional real-world large-scale data set. The
following data sets were used for comparison:

� Ripley’s synthetic data (Ripley, 1996)
� Banana data set (Rätsh et al., 2001)
� Pima Diabetes data set
� Binary classification problem of the MNIST database of handwritten

digits12

All data sets presented a two-class classification problem.

12The MNIST data set is publicly available online from http://yann.lecun.com/exdb/
mnist. It is a popular benchmark data set that has been analyzed in various forms by many
(e.g., Lecun, Bottou, Bengio, & Haffner, 1998; Keerthi, Chapelle, & DeCoste, 2006).

880 J. Ting, A. D’Souza, S. Vijayakumar, and S. Schaal

Ripley’s synthetic data were generated, as described in Tipping (2001),
in two dimensions from mixtures of two gaussians with the classes overlap-
ping such that the Bayes error is around 8%. A training set of 100 samples
was randomly chosen from Ripley’s original 250-sample training data set.
The test error was computed using a test set of 1000 samples. The Banana
data set was taken from the online repository and consisted of 100 train-
ing and test splits provided by Rätsch et al. (2001). Each training set had
400 training samples, and each test set had 4900 samples. Both had two-
dimensional inputs. The Pima Diabetes set had, seven-dimensional inputs
and was split into a training set with 200 samples and a test set with 332
test samples.

Finally, we formulated the MNIST handwritten digit data set into a
binary classification problem for the purpose of distinguishing the digit
0 from all other digits (i.e., a binary classification problem). The complete
MNIST database consists of binary images of handwritten digits (numbered
0 to 9). It has 60,000 training samples, 10,000 test samples, and an input
dimensionality of 784. We conducted experiments with varying sizes of
training data in order to evaluate the performance and run times of various
methods. For example, we considered training set sizes of 1000, 3000, 5000,
and 10,000 samples and test sets of 500 samples.

6.4.2 Methods. We compared VBLS-RVM to an RVM classifier, the SVM,
and logistic regression. As mentioned previously, the lists of algorithms
surveyed in section 2 are designed for regression problems. Though we
could augment them and make them suitable for classification by passing
the outputs through a sigmoid function, we omit them, choosing instead to
make comparisons to native classifiers.

The RVM classifier used a gaussian kernel, k(xm, xn) = exp(−r−2 ‖ xm −
xn ‖2), with the width parameter r set to 0.5. The error/margin trade-off
parameters of the SVM were tuned using five-fold cross-validation. Both
VBLS-RVM and the RVM used gaussian kernels with distance metrics op-
timized by five-fold cross-validation.

For the MNIST data set, we evaluated the following methods: (1) the
primal SVM of Keerthi et al. (2006), designed for fast performance on large-
scale data sets; (2) the fast RVM of Tipping and Faul (2003), (3) VBLS-RVM,
and (4) the original RVM of Tipping (2001). Other competitive classifiers,
aside from the primal SVM (Keerthi et al., 2006), include sparse multinomial
logistic regression (Krishnapuram, Carin, Figueiredo, & Hartemink, 2005)
and the doubly regularized SVM (Wang, Zhu, & Zou, 2006), to list a few.
Note that the original RVM does not scale well to large-scale data sets due
to its O(N3) computational complexity (per EM iteration).

6.4.3 Results. Table 6 shows the classification accuracies of all the algo-
rithms on the benchmark data sets. Results for the Ripley data set were
averaged over 10 experimental trials, while the results for the Banana data

Efficient High-Dimensional Regression 881

Table 6: Average Classification Percentage Accuracies on Standard Classifi-
cation Benchmark Data Sets for the RVM, SVM, VBLS-RVM, and Logistic
Regression.

RVM SVM VBLS-RVM Logistic Ntraining Ntest d

Ripley 9.75% 10.8% 9.66% 11.37% 100 1000 2
Banana 10.8 10.9 11.2 11.0 400 4900 2
Pima Diabetes 19.8 20.1 19.6 22.2 200 332 7

Notes: Results were averaged over 10 experimental trials for the Ripley synthetic data set
and over the first 10 training and test splits for the Banana data set. Ntrain, Ntest, and d are
the number of training samples, test samples, and input dimensionality, respectively.

Table 7: Classification Percentage Accuracies (Prediction Errors) for the MNIST
Handwritten Digit Data Set for Training Sets of Various Sizes.

Ntraining Ntest Test Error Time Taken

Primal SVM (Keerthi et al., 2006) 1000 500 13.4% 5.888 sec
Fast RVM (Tipping and Faul, 2003) 1000 500 11.8 10.033 sec
VBLS-RVM 1000 500 7.6 0.9761 sec (55.56 sec)
RVM (Tipping, 2001) 1000 500 7.6 164.9 sec

Primal SVM 3000 500 14.2 12.88 sec
Fast RVM 3000 500 9 10.56 sec
VBLS-RVM 3000 500 7.6 15.21 sec (401.9 sec)
RVM 3000 500 7.6 4295.3 sec

Primal SVM 5000 500 14.4 20.70 sec
Fast RVM 5000 500 7.8 23.23 sec
VBLS-RVM 5000 500 7.6 56.77 sec (1123.2 sec)
RVM 5000 500 7.6 1685.7 sec

Primal SVM 10,000 500 14.2 38.83 sec
Fast RVM 10,000 500 7.6 43.51 sec
VBLS-RVM 10,000 500 7.6 238.7 sec (4171.6 sec)
RVM 10,000 500 NA NA

Notes: Ntraining and Ntest are the number of training samples and test samples, respectively.
The dimensionality of the input data is 784.

set were averaged over the first 10 training and test splits. The classification
errors reported for the Pima Diabetes set were for the given training and
test sets. We see from the table that the classification accuracy of VBLS-RVM
is comparable to and as competitive as that of the RVM classifier, SVM, and
logistic regression.

Table 7 reports the classification percentage accuracies on test sets, as well
as the running times for each method. The computation time of VBLS was
reported with and without the preprocessing step (i.e., the one-time step
where the training and test design matrices of the RVM’s basis vectors are
constructed. The computational time of VBLS with preprocessing is shown

882 J. Ting, A. D’Souza, S. Vijayakumar, and S. Schaal

in brackets. The construction of the training and test matrices, which have
dimensions Ntraining × Ntraining and Ntraining × Ntest, respectively,13 takes the
bulk of the computation time for VBLS. As such, it is not surprising that
VBLS-RVM takes longer computational times than the fast RVM and SVM.
The VBLS-RVM could be modified to accommodate large-scale data sets by
greedily adding basis vectors to the design matrix (similar to that done in
Tipping & Faul, 2003).

On average, the fast RVM of Tipping and Faul (2003) performs faster than
the RVM and the VBLS-RVM, which is unsurprising given that the modified
RVM adds basis vectors in a greedy fashion, potentially converging on a
suboptimal model. Indeed, we see in Table 7 that the fast RVM is not
necessarily the best performing. However, the speed advantage that VBLS-
RVM offers over the standard RVM is easily observed in the table.

7 Discussion

For efficient learning and feature selection, we introduce a new Bayesian
technique for linear regression analysis with automatic regularization called
variational Bayesian least squares, focusing on scenarios with large sam-
ples of high-dimensional data that are commonly found in the application
domains of robotics and brain-machine interfaces. Although derived in a
linear regression model, VBLS can also be extended to nonlinear regres-
sion and classification settings, as done, for example, in VBLS-RVM. VBLS
is competitive with classical linear regression and other sparse regression
techniques and, furthermore, does not require any manual parameter tun-
ing, giving it a black box statistical property. The iterative nature of VBLS
makes it suitable for real-time, incremental learning (when decisions need
to be made quickly) and allows it to be embedded in other iterative methods
to offer a speed-up advantage.

One issue is the effect of the variational approximation used in the al-
gorithm on the quality of function fit. One could assume, for example, that
VBLS may tend to overfit, since factorial approximations to a joint distri-
bution are known to create more peaked distributions. However, since the
factorial approximation is made over the regression coefficients, a more
peaked distribution ensures only that the regression coefficients are closer
to zero, making VBLS slightly pessimistic and unlikely to overfit.

VBLS can also be applied to other problems such as parameter iden-
tification in noisy high-dimensional regression (Ting, D’Souza, & Schaal,
2006), growing mixtures of experts or locally weighted regression in
high-dimensional spaces. In these scenarios, use of VBLS can potentially
help overcome numerical matrix inversion operations that may other-
wise make an algorithm too computationally expensive to be viable for

13Note that Ntraining and Ntest are the number of training and test samples, respectively.

Efficient High-Dimensional Regression 883

high-dimensional or real-time learning. We are currently pursuing such
research directions as future work.

Acknowledgments

This research was supported in part by National Science Foundation grants
ECS-0325383, IIS-0312802, IIS-0082995, ECS-0326095, and ANI-0224419;
NASA grant AC#98-516; an AFOSR grant on Intelligent Control; and
the ERATO Kawato Dynamic Brain Project funded by the Japanese Sci-
ence and Technology Agency and the ATR Computational Neuroscience
Laboratories.

References

Belsley, D. A., Kuh, E., & Welsch, R. E. (1980). Regression diagnostics: Identifying
influential data and sources of collinearity. New York: Wiley.

Bishop, C. M., & Tipping, M. E. (2000). Variational relevance vector machines. In
C. Boutilier & M. Goldszmidt (Eds.), Proceedings of the 16th Conference in Uncer-
tainty in Artificial Intelligence (pp. 46–53). San Francisco: Morgan Kaufmann.

Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3),
273–297.

Derksen, S., & Keselman, H. (1992). Backward, forward and stepwise automated
subset selection algorithms: Frequency of obtaining authentic and noise variables.
British Journal of Mathematical and Statistical Psychology, 45, 265–282.

Efron, B., Hastie, T., Johnstone, L., & Tibshirani, R. (2004). Least angle regression.
Annals of Statistics, 32, 407–499.

Everitt, B. S. (1984). An introduction to latent variable models. London: Chapman and
Hall.

Fahlman, S. E., & Lebiere, C. (1989). The cascade-correlation learning architecture. In
D. Touretzty (Ed.), Advances in neural information processing systems, 2. Cambridge,
MA: MIT Press.

Feder, M., & Weinstein, E. (1988). Parameter estimation of superimposed signals us-
ing the EM algorithm. IEEE Transactions on Acoustics, Speech and Signal Processing,
36(4), 477–490.

Frank, I., & Friedman, J. (1993). A statistical view of some chemometric regression
tools. Technometrics, 35, 109–135.

Friedman, J. H., Bentley, J. L., & Finkel, R. A. (1977). An algorithm for finding best
matches in logarithmic expected time. ACM Transactions on Mathematical Software,
3, 209–226.

Friedman, J., Hastie, T., & Tibshirani, R. (2007). Pathwise coordinate optimization (Tech.
Rep.). Stanford, CA: Department of Statistics, Stanford University.

Fukumizu, K., Bach, F. R., & Jordan, M. I. (2006). Kernel dimensionality reduction in re-
gression (Tech. Rep.). Berkeley: Department of Statistics, University of California,
Berkeley.

Gelman, A., Carlin, J., Stern, H., & Rubin, D. (2000). Bayesian data analysis. London:
Chapman and Hall.

884 J. Ting, A. D’Souza, S. Vijayakumar, and S. Schaal

Ghahramani, Z., & Beal, M. (2000a). Graphical models and variational methods.
In D. Saad & M. Opper (Eds.), Advanced mean field methods: Theory and practice.
Cambridge, MA: MIT Press.

Ghahramani, Z., & Beal, M. J. (2000b). Variational inference for Bayesian mixtures
of factor analyzers. In S. A. Solla, T. K. Leen, & K.-R. Müller (Eds.), Advances in
neural information processing systems, 12. Cambridge, MA: MIT Press.

Ghahramani, Z., & Hinton, G. E. (1997). The EM algorithm for mixtures of factor analyzers
(Tech. Rep. No CRG-TR-96-1). Toronto: University of Toronto.

Goodman, J. (2004). Exponential priors for maximum entropy models. In Proceedings
of the Annual Meeting of the Association for Computational Linguistics. San Francisco:
Morgan Kaufmann.

Gray, A. G., & Moore, A. (2001). N-body problems in statistical learning. In T. K.
Leen, T. G. Dietterich, & V. Tresp (Eds.), Advances in neural information processing
systems, 13. Cambridge, MA: MIT Press.

Hastie, T., & Tibshirani, R. (1990). Generalized additive models. London: Chapman and
Hall.

Hastie, T., & Tibshirani, R. (2000). Bayesian backfitting. Statistical Science, 15(3), 196–
223.

Jaakkola, T. S., & Jordan, M. I. (2000). Bayesian parameter estimation via variational
methods. Statistics and Computing, 10(1), 25–37.

Jeffreys, H. (1946). An invariant form for the prior probability in estimation problems.
Journal of the Royal Statistical Society. Series A, 186, 453–461.

Kakei, S., Hoffman, D., & Strick, P. (1999). Muscle and movement representations in
the primary motor cortex. Science, 285, 2136–2139.

Keerthi, S. S., Chapelle, O., & DeCoste, D. (2006). Building support vector machines
with reduced classifier complexity. Journal of Machine Learning Research, 7, 1493–
1515.

Kim, S.-J., Koh, K., Lustig, M., Boyd, S., & Gorinevsky, D. (2007). A method for
large-scale l1-regularized least squares. IEEE Journal on Selected Topics in Signal
Processing, 1(4), 606–617.

Komarek, P., & Moore, A. (2000). A dynamic adaptation of AD-trees for efficient ma-
chine learning on large data sets. In Proceedings of the 17th International Conference
on Machine Learning. San Francisco: Morgan Kaufmann.

Krishnapuram, B., Carin, L., Figueiredo, M. A., & Hartemink, A. J. (2005). Sparse
multinomial logistic regression: Fast algorithms and generalization bounds.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(6), 957–
968.

Lecun, Y., Bottou, A., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied
to document recognition. In Proceedings of the IEEE. Piscataway, NJ: IEEE.

Lee, S., Lee, H., Abbeel, P., & Ng, A. (2006). Efficient L1-regularized logistic regress-
sion. In Proceedings of the 21st National Conference on Artificial Intelligence: Menlo
Park, CA: AAAI Press.

Lokhorst, J. (1999). The LASSO and generalized linear models (Tech, Rep.). South Ade-
laide: Department of Statistics, University of South Adelaide, South Australia,
Australia.

MacKay, D. J. C. (1999). Comparison of approximate methods for handling hyper-
parameters. Neural Computation, 11(5), 1035–1068.

Efficient High-Dimensional Regression 885

Massey, W. (1965). Principal component regression in exploratory statistical research.
Journal of the American Statistical Association, 60, 234–246.

Moore, A. (2000). The anchors hierarchy: Using the triangle inequality to survive
high dimensional data. In C. Boutilier & M. Goldszmidt (Eds.), Proceedings of the
16th Conference in Uncertainty in Artificial Intelligence (pp. 397–405). San Francisco:
Morgan Kaufmann.

Moore, A., & Lee, M. S. (1998). Cached sufficient statistics for efficient machine
learning with large datasets. Journal of Artificial Intelligence Research, 8, 67–91.

Neal, R. (1994). Bayesian learning for neural networks. Unpublished doctoral disserta-
tion, University of Toronto.

Ng, A. Y. (2004). Feature selection, L1 vs. L2 regularization, and rotational invariance.
In Proceedings of the 21st International Conference on Machine Learning. New York:
ACM Press.

Omohundro, S. M. (1990). Bumptrees for efficient function, constraint and classifica-
tion learning. In D. Touretzky & R. Lippmann (Eds.), Advances in neural information
processing systems, 3. Cambridge, MA: MIT Press.

Parisi, G. (1988). Statistical field theory. Reading, MA: Addison-Wesley.
Rätsh, G., Onoda, T., & Müller, K.-R. (2001). Soft margins for AdaBoost. Machine

Learning, 42(3), 287–320.
Ripley, B. D. (1996). Pattern recognition and neural networks. Cambridge: Cambridge

University Press.
Rustagi, J. (1976). Variational methods in statistics. Orlando, FL: Academic Press.
Schaal, S., Vijayakumar, S., & Atkeson, C. (1998). Local dimensionality reduction. In

M. Jordan, M. Kearns, & S. Solla (Eds.), Advances in neural information processing
systems, 10. Cambridge, MA: MIT Press.

Sergio, L., & Kalaska, J. (1998). Changes in the temporal pattern of primary motor
cortex activity in a directional isometric force versus limb movement task. Journal
of Neurophysiology, 80, 1577–1583.

Shevade, S., & Keerthi, S. (2003). A simple and efficient algorithm for gene selection
using sparse logistic regression. Bioinformatics, 19(17), 2246–2253.

Tibshirani, R. (1996). Regression shrinkage and selection via the LASSO. Journal of
Royal Statistical Society, Series B, 58(1), 267–288.

Ting, J., D’Souza, A., & Schaal, S. (2006). Bayesian regression with input noise for
high dimensional data. In Proceedings of the 23rd International Conference on Machine
Learning (pp. 937–944). New York: ACM.

Ting, J., D’Souza, A., Yamamoto, K., Yoshioka, T., Hoffman, D., Kakei, S., et al. (2005).
Predicting EMG data from M1 neurons with variational Bayesian least squares.
In Y. Weiss, B. Schölkopf, & J. Platt (Eds.), Advances in neural information processing
systems, 18. Cambridge, MA: MIT Press.

Tipping, M. E. (2001). Sparse Bayesian learning and the relevance vector machine.
Journal of Machine Learning Research, 1, 211–244.

Tipping, M. E., & Bishop, C. M. (1999). Mixtures of probabilistic principal component
analyzers. Neural Computation, 11(2), 443–482.

Tipping, M. E., & Faul, A. C. (2003). Fast marginal likelihood maximisation for
sparse Bayesian methods. In C. M. Bishop & B. J. Frey (Eds.), Proceedings of the
9th International Workshop on Artificial Intelligence and Statistics. N.p.: Society for
Artificial Intelligence and Statistics.

886 J. Ting, A. D’Souza, S. Vijayakumar, and S. Schaal

Vijayakumar, S., & Schaal, S. (2000). Locally weighted projection regression: Incre-
mental real time learning in high dimensional space. In Proceedings of the 17th In-
ternational Conference on Machine Learning (pp. 1079–1086). San Francisco: Morgan
Kaufmann.

Wang, L., Zhu, J., & Zou, H. (2006). The doubly regularized support vector machine.
Statistica Sinica, 16, 589–615.

Williams, C. K. I., & Rasmussen, C. E. (1996). Gaussian processes for regression.
In D. S. Touretzky, M. C. Mozer, & M. E. Hasselmo (Eds.), Advances in neural
information processing systems, 8. Cambridge, MA: MIT Press.

Wold, H. (1975). Soft modeling by latent variables: The nonlinear iterative partial
least squares approach. In J. Gani (Ed.), Perspectives in probability and statistics:
Papers in honor of M. S. Bartlett. London: Academic Press.

Received January 27, 2008; accepted August 3, 2009.

