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a b s t r a c t

We describe a neural network model of the cerebellum based on integrate-and-fire spiking neurons with
conductance-based synapses. The neuron characteristics are derived from our earlier detailed models
of the different cerebellar neurons. We tested the cerebellum model in a real-time control application
with a robotic platform. Delays were introduced in the different sensorimotor pathways according to the
biological system. The main plasticity in the cerebellar model is a spike-timing dependent plasticity (STDP)
at the parallel fiber to Purkinje cell connections. This STDP is driven by the inferior olive (IO) activity, which
encodes an error signal using a novel probabilistic low frequency model. We demonstrate the cerebellar
erebellum
daptive
imulation
earning
nferior olive

model in a robot control system using a target-reaching task. We test whether the system learns to reach
different target positions in a non-destructive way, therefore abstracting a general dynamics model. To
test the system’s ability to self-adapt to different dynamical situations, we present results obtained after
changing the dynamics of the robotic platform significantly (its friction and load). The experimental results
show that the cerebellar-based system is able to adapt dynamically to different contexts.
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. Introduction

Although the cerebellum architecture has been studied for more
han 100 years (Ramón y Cajal, 1995; Golgi, 1967), its functional role
s still an open topic. The cerebellum plays a major role in coordi-
ated and accurate movements (Bastian et al., 2000; Ito, 2001). It is
hought to be an essential computing tissue for our daily manipu-
ation tasks. Its regular topology has inspired many artificial neural
etwork models in the past decades (Kettner et al., 1997; Medina
nd Mauk, 1999; Schweighofer et al., 1998a, b; Spoelstra et al., 2000;
rbib et al., 1995; Eskiizmirliler et al., 2002). Furthermore, there
re many research groups modelling in detail its cells (D’Angelo et
l., 2001; Bezzi et al., 2004; Steuber et al., 2004) in order to eluci-

ate the specific computations that take place at each part of the
erebellum architecture.

There have been great advances in robotics, mainly in indus-
rial applications. Yet most of the industrial robots use stiff joints
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nd high-gain closed-loop control. The movement of stiff joints
acilitates control since it reduces (or even avoids) the necessity
f dynamics models. Industrial robots are able to perform accurate
rajectory-following adopting online closed-loop error-correction
chemes. This strategy became possible due to the outstanding pro-
essing speed of current circuits that calculate errors and deliver
eedback correction signals on a microsecond time scale. Never-
heless, stiff-joint control does not take advantage of the robot
ynamics, which results in unnatural control, wasted energy and
educed robot autonomy.

In contrast, biological limbs have joints of variable stiffness
nd use low-gain control schemes where the dynamics cannot be
gnored. Indeed, the dynamics, for instance, of an arm–hand system,
s likely to be significantly modified when manipulating objects of
ifferent weights. Moreover, biological systems have delays in sen-
orimotor pathways up to several hundreds of milliseconds. This
akes it impossible to apply on-line closed-loop error-correction

trategies without having predictor modules able to abstract the
inematics and dynamics models of the platform.

There are plenty of challenges in robotics such as the develop-
ent of accurate low-gain control schemes for robotic platforms of
everal degrees of freedom (DOF) and compliant joints (non-stiff).
ompliant joints and low-gain control are of particular interest

or robots interacting with humans. For security reasons, a robot
ecomes a safer platform if it is not able to apply dangerous forces
nd can absorb energy.
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In this paper, we emulated the learning strategy followed by
iological systems to control low-gain compliant robotic platforms

n the presence of sensorimotor pathways with delays of hun-
reds of millisecond. To do this, we studied how a cerebellum
odel can abstract dynamics models of the robotic platform to

acilitate control by predicting and correcting errors in the motor
pace.
. Cerebellum Model

Previous modelling of the cerebellum contribution in movement
earning includes the modeling of smooth pursuit eye movements

i
o

i
L

ig. 1. Cerebellum model diagram. Inputs about the movement (desired arm state and tar
istance to the target and its absolute position in the experimental field (dtarg(t) and �tar

oints along the trajectory. These desired states were obtained from a crude inverse kinem
bers projected to two layers of granule cells (GR, 1000 neurons per layer) and to 16 deep c
live (IO) neurons were divided along 4 functional zones (inspired from cerebellar microz
nd shoulder joints. The PC received excitatory inputs from all the desired joint state-rela
ll parallel fibers PF with a connection probability of pPC-PF= 0.8. They also received an affe
onnections from two PCs of the same microzone. The teaching signal was processed by
downward arrow, bottom), the DCN firing rates were interpreted as predictive positive (+
he numbers in brackets indicate the number of cells per layer and per zone.
ms 94 (2008) 18–27 19

Kettner et al., 1997). In this work, the cerebellar nuclei cells were
ot implemented in their model, and analog units, not spiking
eurons were used. Schweighofer et al. (1998a) proposed a cerebel-

um model learning the inverse dynamics of a two-link six-muscle
rm system. The parallel fiber-Purkinje cell (PF-PC) long-term
epression (LTD) was biologically inspired, but not the long-term
otentiation (LTP), which was implemented as a weights normal-
zation process. Moreover, learning was performed over short trials
nly (less than 500 ms) and not continuously as in our contribution.

A few cerebellar models for eyelid conditioning have used spik-
ng neurons (e.g. Medina and Mauk, 1999; Hofstötter et al., 2002).
earning was based on spikes coincidences between neurons, but

get information) were sent (upward arrow) to the two layers of mossy fibers (MF):
g) as well as desired positions (�) and speeds (�̇) of the shoulder (s) and elbow (e)
atic model (see Fig. 9), representing motor cortex and other motor areas. The mossy
erebellar nuclei (DCN) cells. The 32 Purkinje cells (PC), 16 DCN cells and 32 inferior

one organisation), one for each of the actuators, agonist or antagonist, of the elbow
ted GR (ascending axons that maintain the cells in a state of excitability) and from
rent from the IO in a one-to-one scheme. In turn, the DCN cells received inhibitory
the IO cells (downward arrow, top) (see Fig. 9). At the output of the cerebellum
) and negative (−) torque corrections (�) for the shoulder (s) and elbow (e) joints.
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Fig. 3. Cell model with conductance-based synapses. Cm: membrane capacitance,
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ig. 2. Encoding of mossy fibers. The analog to spikes transformation for driving the
ossy fibers used overlapping radial basis functions (RBF). The example here makes

eference to encoded joint variables (see Figs. 1 and 9).

one used the same probabilistic low-frequency firing of the infe-
ior olive in their learning rules.

We simulated in real time a cerebellum spiking neural model
Boucheny et al., 2005; Arnold, 2001; Ros et al., 2006; Huang et al.,
998) made of approximately 2100 units: 112 mossy fibers (MF),
000 granule cells (GR), whose axons form the parallel fibers (PF),
Golgi cells (GC), 32 inferior olive (IO) cells, whose axons form the

limbing fibers (CF), 32 Purkinje cells (PC) and 16 deep cerebellar
uclei (DCN) cells (Fig. 1).

The cerebellum spiking neural model was simulated with the
DLUT simulator (Event-Driven simulator based on LookUp Tables)
Ros et al., 2006). The EDLUT simulator first compiles the neuron

odels offline to avoid heavy numerical calculation during the
etwork simulation. The EDLUT environment facilitates a direct

nterface to real robotic platforms by permitting real-time sim-
lation of large-scale spiking neural networks. The software is
articularly suited for a cerebellar model in which sparse activity

s expected (Coenen et al., 2001; Schweighofer et al., 2001) in the
umerous neurons of the granular layer (there are approximately
011 granule cells in the cerebellum (Kandel et al., 2000)).
Mossy fibers were implemented as leaky integrate-and-fire neu-
ons. Their input current was determined by a radial basis function
RBF), which received one of the sensory variables (e.g. target posi-
ion or velocity) or one of the desired joint states (position and

c
T
s
e

ig. 4. Neuron simulation. (From top to bottom) The neuron receives excitatory (exc) an
onductances (g), followed by their exponential decay. (Bottom) The neuron membrane p
ntegration of Eq. (1) (Eul) (continuous line) and the EDLUT event-driven (ED) computati
xcellent.
m: membrane voltage, Erest: resting reversal potential, Grest: leakage conductance
t rest, Eexc: excitatory reversal potential, gexc(t): conductance of excitatory synapse,

inh: inhibitory reversal potential, ginh(t): conductance of inhibitory synapse.

peed of elbow and shoulder joints) (Figs. 1 and 2). The RBF cen-
ers were evenly distributed across the sensory dimensions, and
heir variance were chosen to ensure small responses overlap from
onsecutive mossy fibers.

Lasting functional changes at the synaptic level can be driven
y the coincidence of multiple signals at individual synaptic sites
Brown et al., 1990). Long-term depression of the parallel fiber input
o cerebellar Purkinje cells is a form of synaptic plasticity that can
ast from hours to days (Ito and Kano, 1982) and is thought to under-
ie several forms of associative motor learning (Mauk et al., 1998). In
he cerebellar model that we present, long-term depression (LTD) is
nduced by correlating activation of parallel fiber (PF) and climbing
ber (CF) synaptic inputs (see Section 2.3).

The inferior olive (IO) neurons synapse onto the Purkinje cells
nd contribute to direct the plasticity of PF-PC synapses. These
eurons, however, fire at very low rates (less than 10 Hz), which
ppears problematic to capture the high-frequency information
f the error signal of the task being learned. This apparent diffi-

ulty may be solved by their irregular or chaotic firing (Keating and
hach, 1995; Kuroda et al., 2001; Schweighofer et al., 2004). We
uggest that this is a very important property, which has the ben-
ficial consequence to sample statistically the entire range of the

d inhibitory (inh) input spikes (I), which provoke abrupt increases in the synaptic
otential (mem. pot) follows Eq. (1). A comparison is made between the continuous
ons, which occur only at the time of the spikes indicated by the ‘X’s. The match is
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Table 1
Connectivity table of the cerebellum model

Cell type Number Afferents from Efferents to

Granule 2000 4 mossy fibers 5 Golgi
32 Purkinje
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rror signal over multiple trials (see below). Here, we implemented
his irregular firing using a Poisson model for spike generation.

Error correction was accomplished by changes in the activity
f Purkinje cells that in turn influenced the activity of the deep
erebellar nuclei cells (Purves et al., 2001). These were translated
nto analog torque correction signals for the robot.

.1. Neuron Models

Different neuron types (granule cell, Purkinje cell and Golgi cell)
ere included in the simulated network. An integrate-and-fire neu-

on is represented by the circuit in Fig. 3 and defined by Eq. (1).
ts response behaviour using two different simulation strategies is
hown in Fig. 4. This neuron model is a modified version of the
pike-Response-Model (SRM) (Gerstner and Kistler, 2002) widely
sed in the literature (Eckhorn et al., 1990; Schoenauer et al., 2002;
haefer et al., 2002) to study, for example, temporal coding issues
Eckhorn et al., 2004).

Cm
dVm

dt
= gexc(t) (Eexc − Vm(t)) + ginh(t) (Einh − Vm(t))

+Grest (Erest − Vm(t))

gexc(t) =
{

0 t < t0
Gexc e

−(t − t0)
�exc

t ≥ t0

ginh(t) =
{

0 t < t0

Ginh e
−(t − t0)

�inh
t ≥ t0

(1)

The synapses were modelled as input-driven conductances
with a positive abrupt change triggered by the post-synaptic event
nd an exponential decay); AMPA mediated excitatory synapses

ad a shorter time constant (�exc= 0.5 ms) than GABA inhibitory
ynapses (�inh = 10 ms). Each neuron type is defined by differ-
nt characteristics (parameters) according to neurophysiological
haracterization studies (D’Angelo et al., 1995, 2001; Maex and De
chutter, 1998; Barbour, 1993; Solinas et al., 2003).

2
a
d
t
e

ig. 5. Inferior olive probabilistic encoding of the error. (a) Example of the error to be en
c) Mean firing rate of the cell averaged over all trials in “(b)”. Notice that the maximum fi
he cell related to the error amplitude. Notice how the cell never fires quite at the same m
olgi 5 1000 granule 2000 granule

urkinje 32 1500 granule 2 deep cerebellar neurons
1 climbing fiber

In our model, the inferior olive cells transmitted the error signal
sing probabilistic low rate spikes. Mossy fibers carried sensorimo-
or signals encoded into rate coded spike trains (activity 0–100 Hz).
inally, deep cerebellar nuclei cells provided spike trains which
ncoded corrective motor torque signals.

.2. Cerebellum Topology

The model reproduced the cerebellum’s different functional
nd topological features (Andersen et al., 1992; Kandel et al.,
000): sparse coding at the parallel fibers (Coenen et al., 2001;
chweighofer et al., 2001), converging topology into Purkinje cells,
urkinje cell receiving a dedicated “teaching climbing fiber” from
he inferior olive, inhibition to the granule cells from collector Golgi
ells, etc. (Table 1 and Fig. 1)

.3. Cerebellar Learning Rules

We implemented learning at the parallel fibers to the Purk-
nje Cells connections (indicated by a dashed ellipse in Fig. 1) (Ito,

001). The parallel fibers brought in the sensorimotor information
nd the Purkinje cells drove the cerebellum output through the
eep cerebellar nuclei cells. The weight adaptation was driven by
he activity generated by the inferior olive (IO), which encoded an
rror signal into a low frequency probabilistic spike train (from 0

coded. (b) Probabilistic firing of an inferior olive cell to the error in “(a)” (see text).
ring rate is close to 10 Hz. The smooth curve shows the normalized input current to
oment relative to the error, but encodes it nevertheless.
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Fig. 6. Spike-Timing Dependent Plasticity (SDTP). Kernel used for granule cell (GR)
and Purkinje cell (PC) synaptic long-term depression, corresponding to the solution
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Fig. 7. Input current to inferior olivary cells. Each olivary cell is related to the agonist
muscle i and its firing is dependent on the error signal for this muscle (see text). This
reflects the influence of the deep cerebellar nuclei (DCN) feedback on the inferior
olive (IO) together with an effector arm system made of agonist and antagonist
muscle pairs. The left side of the vertical line is for an error on the antagonist muscle,
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The error signal � was used to compute the value of the
input current to each IO cell. Smoothing was performed using
a sigmoid, and inhibition of IO cells by DCN neurons was taken
into account within a formal scheme. The positive part of the
f a second order differential system. The kernel is convolved with the spike train
f the afferent PF (all spikes emitted for t < 0). This provides a measure of past PF
ctivity setting the eligibility of the synapse to depression when the inferior olive
IO) neuron afferent to the PC emits a spike (t = 0).

o 10 Hz, average 1 Hz) (Kuroda et al., 2001; Schweighofer et al.,
998b).

We modeled the inferior olive cell responses with a probabilis-
ic Poisson process: given the normalized error signal �(t) and a
andom number �(t) between 0 and 1, the cell fired a spike if
(t) > �(t), otherwise it remained silent (Boucheny et al., 2005).
n this way, on one hand, a single spike reported an accurately
imed information regarding the instantaneous error; and on the
ther hand, the probabilistic spike sampling of the error ensured
hat the whole error region was accurately represented over tri-
ls with the cell firing at most 10 spikes per second. Hence, the
rror evolution is accurately sampled even at low frequency. The
istogram of the inferior olive output spikes reproduces the error
ignal temporal trace; see Fig. 5 for an example. This firing behavior
s similar to the ones obtained in physiologial recordings (Kuroda
t al., 2001).

The long-term potentiation (LTP) implemented at the paral-
el fiber to Purkinje cell synapses was a non-associative weight
ncrease triggered by each granule cell spike (Eq. (2)) (Lev-Ram
t al., 2003). The long-term depression (LTD) was an associative
eight decrease triggered by spikes from the inferior olive (Eq. (3))

Ito and Kano, 1982; Ito, 2001). This model of LTD uses a temporal
ernel (Fig. 6), which correlates each spike from the inferior olive
ith the past activity of a granule cell and shows a peak at 100 ms

Kettner et al., 1997; Spoelstra et al., 2000; Raymond and Lisberger,
998).

The network maximizes learning (LTD) at synaptic sites in which
he input parallel fiber delayed activity is highly correlated with the
rror signal from the inferior olive. Hence, this kernel produces a
redictive corrective output in the network that helps the control
ask in the presence of significance transmission delays.

TP: �w(to) = ˛ ıGR(to) (2)

TD: �w(tIO) = −
∫ tIO

−∞
K(t − tIO) ıGR(t) dt (3)

The teaching signal relied on the motor error, namely the dis-
repancy between the desired state of the joints at time t and
he actual one. The error for each joint, respectively, �s and �e,
or shoulder and elbow, was computed as the sum of the posi-

ion and velocity errors, weighted by coefficients Kp = 10 and
d = 23 (same for each joint). The signals were delayed in order
o align them in time. The desired command at time t was applied
t time t + ı1 and the joint state at time t + ı1 was sensed by
he system at time t + ı1 + ı2. Hence, the error signal for joint i

F
E
T
h
l

hereas the right side is for the agonist muscle. The rule states that for an error on
he antagonist muscle (left part), if the torque �+

i,c
> 0.2�i,cmax , then the IO current

+
i

= 0 (bottom line), otherwise I+
i

= 0.15 (top line).

t time t was given by: �i(t) = Kp(�i,des(t − ı1 − ı2) − �i(t − ı2)) +
v(�̇i,des(t − ı1 − ı2) − �̇i(t − ı2)).

Physiologically, the time-matching of the desired and actual
oint states can be understood by the fact that the trajectory error
ould be detected at the level of the spinal cord, through a direct
rive from the gamma motoneurons to the spinal cord (Contreras-
idal et al., 1997; Spoelstra et al., 2000).
ig. 8. Experimental robotic platform. (a) Representation of the arm in simulation.
ach green point (grey in b&w) represents a target position (0–7) along a circle. (b)
wo degrees of freedom (DOF) robotic arm used in the experiments. The motors
ave no gears and therefore are non-stiff (compliant) low-torque motors with non-

inearities difficult to control.
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rror signal for joint i, [�i]
+ was related to an error in the cor-

esponding agonist muscle, and the negative part [�i]
− to an

rror in the antagonist muscle. If we denote �+
i,c

the corrective
orque command computed by the cerebellum for agonist mus-
le i at time t − ı1 − ı2, then the input current I+

i
to IO cells

ithin the microzone i+ was given by: if[�i]
+ > 0, then I+

i
=

.15 + (0.8)/(1 + exp(−10([�i]
+)/(�+

i,cmax
) + 4)), if([�i]

− >

& �+
i,c

> 0.2�i,cmax ), then I+
i

= 0 , otherwise, I+
i

= 0.15 (see Fig. 7).
The three equations above correspond, respectively, to the cases

hen the cerebellar output undershot, overshot or equalled the
utput torque required for proper motor correction. The second
quation modeled mathematically the efferent inhibition of the

CN to the IO and is interpreted as follows: if a non-negligible
orrection was output to agonist muscle i (DCN neuron out-
ut) whereas the movement required a positive correction for
he antagonist muscle (error signal), then the unwilled correc-
ion was reduced (via IO inhibition by DCN neurons depending

t
c
p
T
f

ig. 9. Diagram of the control system for arm movement generation. The cerebellum acts
oward the target was computed in cartesian coordinates and transformed into joint coor
orque command and to update the predictive corrective command of cerebellum. The ce
wo torques, crude and corrective torques, were summed to control the arm movement w
he level of the limb and sent back to the system with a delay of ı2 = 50 ms. This error wa
ms 94 (2008) 18–27 23

n the opposite error signal). The error currents were normalized
sing �smax = 1000 and �emax = 600 for the shoulder and the elbow,
espectively.

. Robotic Platform

The robotic platform was a two-DOF arm (Fig. 8b). The two joints
ere not stiff (compliant) and the motors applied low forces. The
latform allowed continuous measurements of the position of each

oint and power consumption. A pen or a weight could be attached
o the arm’s ending to change its dynamics.

The control system was simulated on computer. To relieve

he computer from interface computation and permit real-time
ommunication with the robot, an FPGA-based board contained
osition acquisition modules and motor-driver controller circuits.
he controller modules translated the motor-torque commands
rom the computer into continuous signals using pulse-width mod-

as a predictive corrective module in the control loop. A desired smooth trajectory
dinates. These desired arm states were used at each time step to compute a crude
rebellum command included information about the context of the movement. The
ith a delay of ı1 = 50 ms. In turn, the error of the resulting trajectory was sensed at
s transformed to compute the cerebellum training signal by inferior olive neurons.
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mands sent to the joints were the sum of the output of a crude
inverse dynamic controller and of the anticipative corrective cere-
bellar output. These torques were sent to the limb with a time delay
ı1 = 50 ms.
4 R.R. Carrillo et al. / Bi

lation (PWM). The PWM signal was supplied to the motors by a
urrent-driver circuit.

. Experimental Results

The spiking neurons of the cerebellar network (Section 2) were
imulated using a computationally efficient table-based event-
riven simulator, the EDLUT simulator (Ros et al., 2006) (see Fig. 4).
DLUT is particularly suited for a cerebellar model where sparse
ctivity is expected in the numerous neurons of the granular layer
Coenen et al., 2001; Schweighofer et al., 2001). Plasticity for this

odel was also developed to allow online real-time learning.
The control system was first tested in simulations, then run on

he experimental robotic setup (Fig. 8). Starting from a central posi-
ion, the robotic arm performed straight movements to reach one
f the different targets equally set on a circle (radius of 20 cm). The
ovements were performed at high speed (T = 0.5 s for each com-

lete movement) to check the ability of the cerebellum to abstract
he robotic platform dynamics.

To interact in real time, the robotic platform communicated with
he EDLUT simulator every millisecond. At every time step the sen-
ory data (robot joints position) was translated into spike trains
ransmitted through the mossy fibers. The cerebellar output spike
rains were translated into torque correction signals (outputs of
he deep cerebellar nuclei cells) and the error signal was trans-
ormed into a probabilistic low frequency spike train (inferior olive
ell probabilistic model).

The simulations were run on a Pentium IV 2.8 GHz. There were
100 neurons in the network for approximately 52,000 synap-
ic connections. During 1 s of simulation, the cerebellar network
eceived an average of 395 spikes, delivered 405 output spikes, and
rocessed 935,801 events. Under these conditions the simulator ran

n real time the full network and the input-output transformations.
Considering the duration of motor execution (T = 0.5 s) relative to

he time delays in cortico-spinal loops (up to 300 ms), we made the
ssumption that each reaching movement was performed in open-
oop (no high-level motor correction were applied while reaching
he target). Corrective commands to compensate for dynamics per-
urbations were computed only by the cerebellar model.

A movement was separated in two phases:

Open-loop movement phase: A movement lasted Tmove =
500 ms. The torque command applied to each articulation i was
the sum of the cerebellar correction (�i,c) and the i th torque (�i),
computed by a basic inverse dynamic model according to the
desired kinematic trajectory (Fig. 9). These two commands were
sent to the limbs with a delay of ı1= 50 ms.
Post-movement phase: It was set to a duration of Tpost = 0.2 s.
Its goal was to stop the movement of the arm, independently of
its position relative to the target. The torque applied to each joint
corresponds to the non delayed output of a derivative controller
with a null-desired velocity: �i = Kvstop�i with Kvstop=10. The lack
of delay in such a command in a human arm control model can be
explained by a different motor strategy, consisting, for example,
in a high level co-contraction command of the antagonist muscles
controlling an articulation.

The architecture of the model for the generation of accurate
ast arm reaching movements is illustrated in Fig. 9. A minimum

erk model (Flash and Hogans, 1985) was used to compute the
esired smooth trajectory of the arm end-point towards the tar-
et at (OX , OY ). The desired trajectory was expressed in Cartesian
oordinates and transformed into joint coordinates by the inverse
inematic module. To solve the redundancy problem in the coor-

F
(
d
c

ms 94 (2008) 18–27

inates transformation, the robotic arm position was set to always
e in a biological plausible posture, e.g. that the angle between the
wo links of the limb were to remain positive.

During the open-loop period of the movement, the torque com-
ig. 10. Target-reaching experiments. (a) Trajectory followed by the arm’s ending.
b) Average distance error computed over all trajectories when learning 1, 2, 3 or 4
ifferent trajectories. (c) Distance error of the trajectory of target No. 6 when learnt
onjointly with 1, 2, 3 or 4 different trajectories.
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get trajectories (Fig. 10). An example shows the movement in x–
y coordinates before and after learning (Fig. 11). The cerebellum
corrections build up over trials to compensate for the movement
errors (Fig. 12).
ig. 11. Target-reaching example. Desired and actual arm ending position along the
- and y- axes (a) before learning and (b) after learning. 3 trials (3 s) are shown.
he curve part of the trajectory shows the open-loop movement. The movements to
eset the trials are not shown; this explains the abrupt vertical lines.

The error in the execution of movement was computed at the
evel of the arm, and sent back to the system with a delay of ı2
50 ms. It was mainly used to determine the teaching signal con-

eyed by the inferior olive to the cerebellum to produce anticipative
otor corrections. The error signal was composed of an angular

osition error and an angular velocity error for each articulation.
Finally, the cerebellar neural network received non delayed

esired trajectory and movement context, modeling inputs orig-
nating from motor cortex and other areas, and its output
articipated to the construction of the teaching signal with a delay
f ı3 = 100 ms.

The inverse dynamic module was based on simplistic assump-
ions, such as mass homogeneity along the limbs and friction factor
o compensate roughly for friction torques that reached 17 N cm

or the shoulder motor and 3 N cm for the elbow. Other sources of
ynamical perturbations, such as the forces exerted by the wires
n the arm, were negligible compared to friction.

After defining an acceptable crude controller, we verified the
epeatability of the movements and therefore of the errors of the

ig. 12. Cerebellar torque contributions to target reaching experiments over the first
00 trials. Cerebellar torque increases as the system learns (a) at the elbow and (b)
t the shoulder. Each trial lasted 1 s.

F
w
e
n
I

ms 94 (2008) 18–27 25

rude controller. Indeed, the role of the cerebellum was to learn
he anticipative corrections required across repeated trials of the
ame task. If the dynamics perturbations moving the arm to the
esired paths varied too much across different trials under the same
ontext (manipulating the same object) then no improvements
ould have been expected for the proposed control/correction
cheme.

The model learned effectively and concurrently different tar-
ig. 13. Learning to compensate for the dynamics changes of the arm. (a) A 0.5 kg
as added at the end of the robotic arm. (b) Friction was increased by inserting the

nd of the robotic arm into a sand pool. Notice how, before learning, the robot moved
early vertically, whereas the intended movement was horizontal along the x-axis.

t was indeed correct after learning.
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Fig. 14. Temporal adaptation. Error evolution as the task was

We also performed experiments where the dynamics of the arm
as change either by a load of 500 g added to the end of the two-

oint arm or by modifying the friction of the arm by inserting the
nd of the arm into a sand pool. The results of the cerebellum-driven
mproved trajectories are shown in Fig. 13.

The evolution of the error as the object/context was changed is
hown in Fig. 14. The cerebellum network learned the new context
very time it was changed. It also appeared to adapt more rapidly to
he no-load condition over time, although a more detailed analysis
s needed to confirm this. Note that the load, no-load condition was
ot explicitely encoded here, hence the system could not switch

mmediately to the right conditions without an adaptation period
rst.

These experimental results show that the control system with
he cerebellum model can learn to compensate for dynamics per-
urbations caused by different contexts: friction or load changes
hat significantly alter the robot arm inertial moments.

We have shown how the spike-timing dependent plasticity
STDP) rule works as a temporal kernel filter relating the activity
rom the inferior olive (error dependent) with the sensorimotor
nputs received through the granule cells. This scheme was able to
onstruct predictive dynamic corrections for fast reaching move-
ents.
A residual average distance error can be noticed even after the

earning has stabilized. This error could be attributed to some sys-
em limitations but also to the fact that we dealt with a real robot
hich responded differently over time. For instance, over trials, the

obot’s motors increased considerably their temperature. This pre-
ented the cerebellar model from adapting completely to the robot
esponse, unless a richer and more complete sensorimotor context
ere made available.

However the goal of the present contribution was not to focus
n designing a high performance control scheme but rather to
valuate an adaptive and robust working hypothesis based on a spe-
ific physiologically-relevant cerebellar network that could run and

earn in real time. The performance obtained fulfilled this require-

ent although deeper studies on complementary mechanisms will
e studied in the future to evaluate how the control strategy can
ake full advantage of further biologically plausible features of the
ystem.

s
w
m
t

ed from manipulating a 0.5 kg load to manipulating no load.

. Discussion

In this work we have simulated a complete physiologically-
elevant spiking cerebellar model in real time, and evaluated its
otential role in generating predictive corrective actions towards
ccurate control in fast robotic reaching movements.

Whereas with previous simulators many computing hours
ould have been required to simulate a spiking cerebellar model

earning to correct trajectories, with the current simulator, learning
ook place in less than a real hour to achieve acceptable perfor-

ance levels allowing real-time control of a robot.
This performance was achieved even with the physiologically

ealistic firing of the inferior olive restricted to less than 10 Hz.
o the best of our knowledge, this is the first time that such per-
ormance is obtained with the present biological characteristics in
complete action-perception loop using a real robot. This indeed

uggests that one of the tasks of the inferior olive is to sample
on-deterministically the input signals it receives to provide over
ime a complete representation of that signal to plasticity mech-
nisms at the Purkinje cells. Moreover, the results showed that
ittle destructive interference occurred in learning the same task
n different sensorimotor contexts, namely different overall target
rajectories.

The robot arm we have used for the experiments had two non-
tiff (compliant) joints controlled with low torque motors. In order
o accurately control this platform it was necessary to build a
redictive dynamics model of the arm. The cerebellum network
ssentially fulfilled this purpose.

Moreover, we implemented the delays in the sensorimotor path-
ays to evaluate the predictive strategy tested in this work. We

mplemented a STDP kernel filter that correlates the activity from
he inferior olive (encoding the error using a probabilistic model)
ith the sensorimotor activity received through the parallel fibers.

he correlation was done at the parallel fibers to Purkinje cells
ynaptic connections.
The experimental results showed how the cerebellum-based
ystem was able to adapt dynamically to different contexts. Future
ork will test sensorimotor encoding strategies to learn multiple
odels and context switching mechanisms to choose optimal con-

rol action with minimal delays and relearning.
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