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a b s t r a c t

Around half of the neurons of a human brain are granule cells (approximately 1011granule neurons)
[Kandel, E.R., Schwartz, J.H., Jessell, T.M., 2000. Principles of Neural Science. McGraw-Hill Professional
Publishing, New York]. In order to study in detail the functional role of the intrinsic features of this cell
we have developed a pre-compiled behavioural model based on the simplified granule-cell model of
Bezzi et al. [Bezzi, M., Nieus, T., Arleo, A., D’Angelo, E., Coenen, O.J.-M.D., 2004. Information transfer at
the mossy fiber—granule cell synapse of the cerebellum. 34th Annual Meeting. Society for Neuroscience,
San Diego, CA, USA]. We can use an efficient event-driven simulation scheme based on lookup tables
(EDLUT) [Ros, E., Carrillo, R.R., Ortigosa, E.M., Barbour, B., Ags, R., 2006. Event-driven simulation scheme
for spiking neural networks using lookup tables to characterize neuronal dynamics. Neural Computation
18 (12), 2959–2993]. For this purpose it is necessary to compile into tables the data obtained through
Bursting
Subthreshold oscillations
Resonance

a massive numerical calculation of the simplified cell model. This allows network simulations requiring
minimal numerical calculation. There are three major features that are considered functionally relevant
in the simplified granule cell model: bursting, subthreshold oscillations and resonance. In this work we
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describe how the cell mod

. Introduction

The cerebellum is a well structured neural system conformed
y three layers: granular, molecular and Purkinje layer. The granu-
ar layer contains approximately 1011 granule cells that represent
n number of neurons half of the cells of the whole human brain
Kandel et al., 2000). The granule cells receive their inputs through
he mossy fibers. The axons of the granule cells are called paral-
el fibers that connect with different Purkinje cells. The granular
ayer represents a highly divergent structure (there are approxi-

ately 103 granule cells per mossy fiber). Therefore they seem to
e responsible for building a sparse representation of the mossy
bers inputs (Marr, 1969; Albus, 1971; Coenen et al., 2001; D’Angelo
t al., 2005). But the dynamical properties of the cell are still under
tudy (Magistretti et al., 2006; Armano et al., 2000; D’Angelo et
l., 2005; Nieus et al., 2006; Mapelli and D’Angelo, 2007; Rossi et

l., 2006) and detailed cell models are being built to evaluate the
unctional role (D’Angelo et al., 2001) of these dynamics. The neu-
on models can be simulated with different simulators (NEURON
Hines and Carnevale, 1997), Genesis (Bower and Beeman, 1998),
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compiled into tables keeping these key properties of the neuron model.
© 2008 Elsevier Ireland Ltd. All rights reserved.

DLUT (Ros et al., 2006)) at different levels of detail. Recently an effi-
ient event-driven lookup-table-based simulator (EDLUT) (Ros et
l., 2006) has been developed to allow large-scale network simula-
ions based on pre-compiled models and therefore avoiding intense
umerical calculation during the neural-network simulation. Using
DLUT requires compiling previously the single cell behaviour into
ables. This is done by means of massive calculation to charac-
erize how the cell state changes in response to an input spike
depending on its initial status). For this purpose, lookup tables
LUTs) are built compiling the characteristic cell status traces in
esponse to input spikes. Once these tables are built we can run
vent-driven large-scale network simulations without redoing any
umerical calculation. The neuron state can be retrieved from these
ell-characterizing LUTs at any instant in response to any input
pike.

After building up cell models based on characterizing LUTs we
eed to validate the model in two ways:

1. Accuracy validation. The number of samples in each dimension

of the table can be critical to the accuracy of the table-based
cell approach. Therefore we simulate the cell model with a clas-
sical numerical calculation method (for instance, Euler method
with a very short time step) and we compare the output spike
train obtained in response to different input spike trains with the

http://www.sciencedirect.com/science/journal/03032647
http://www.elsevier.com/locate/biosystems
mailto:rcarrillo@atc.ugr.es
dx.doi.org/10.1016/j.biosystems.2008.05.007
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Fig. 1. Simplified-m

results obtained using EDLUT simulator. The comparison of the
output spike trains obtained by the two methods is done using
the van Rossum distance (van Rossum, 2001).

. Functional validation. Key cell features must be kept. If we want
to abstract a cell model that includes certain cell features that are
considered relevant we also need to validate that the table-based
model is able to reproduce the cell features under study.

. Integrate-and-fire cerebellar granule-cell model

A detailed Hodgkin–Huxley model (Hodgkin and Huxley, 1952),
f a granule cell defined in NEURON (with more than 15 differen-
ial equations describing its dynamics) was built to reproduce in
etail the cell dynamics and evaluate the significant variables of
he model (D’Angelo et al., 2001). Based on that model, Bezzi et al.
2004) presented a simplified integrated-and-fire cell model with
hreshold mechanism which kept important dynamical properties
f the granule cell, such as subthreshold oscillations (Richardson et
l., 2003), resonance (Izhikevich, 2001) and bursting (Smith et al.,
000). The model is based on two main variables: the membrane
otential (Vx) and a gating variable that models a slow K+current.
ig. 1 illustrates the process from cell behaviour characterization
ased on neurophysiologic cell recordings to network simulations
ased on simplified compiled models.

The simplified model described in Bezzi et al. (2004) is defined
ith the following equations:

C
dV

dt
= gk−slow(V − Vk)n(V, t) + IActive + ILeak − ISyn (1)

dn

dt
= n − n∞

�n
(2)

here V and C are the neuron membrane potential and capacitance
espectively while IActive and ILeak are dynamic currents of the model
efined by the following expressions

IActive = gk−ir(V − Vk)m∞(V) + gNa−p(V − VNa)a∞(V) (3)

ILeak = gLeakA(V − VLeakA) + gGABA-A(V − VGABA−A) (4)

inally we have complemented the model to include the
ell synapses as input-driven conductances. ISyn represents the
ynaptic-mediated current through the excitatory and inhibitory
nput-driven conductances (gexc and ginh).

Syn = (V − Vexc)gexc(t) + (V − Vinh)ginh(t) (5)

dgexc

dt
= −gexc

�exc
;

dginh

dt
= −ginh

�inh
(6)
xcitatory and inhibitory conductances (gexc and ginh) depend on
he value of the conductances when they were updated the last
ime and the time passed since then. Each time a new input spike is
eceived the conductaces (Ginh or Gexc) are set to a specific value that
epends on the synaptic weight. Synaptic-conductance dynamics

r
A
d
r
a

obtaining process.

re modelled as exponential functions:

exc(t) =
{

0, t < t0
Gexce−(t−t0)/�exc , t ≥ t0

(7)

here t0 is the input-spike arrival time and �exc and �inh are the
emporal constants of the synaptic conductances.

. Table-based approach

The neuron behaviour has been compiled into six tables. In order
o use the event-driven simulator (EDLUT) the neuron state (mem-
rane potential, synaptic conductances and other variables such as
he gating variable n) need to be defined as functions of the neuron
tate at the instant in which it was updated the last time. Since it is
n event-driven scheme the neuron state is updated each time that
n event is produced (output spikes) or an input event is received
input spikes).

The model has been compiled into the following tables:

One table of five dimensions for the membrane potential, Vm =
f (�t, gexc0, ginh0, n0, V0).
One table of five dimensions for the gating variable, n =
f (�t, gexc0, ginh0, n0, V0).
Two tables of two dimensions for the conductances, gexc =
f (�t, gexc0), ginh = f (�t, ginh0).
Two tables of 4 dimensions for the firing prediction, tf =
f (gexc, ginh, n0, V0) and tf end = f (gexc, ginh, n0, V0).

For each dimension we used a different number of samples
indicated into parentheses): �t(44), gexc0 (10), ginh0 (10), n0 (18)
nd V0 (30). Therefore the larger tables require 2.37 × 106 samples
approximately 9.04 MB). The whole cell model requires 4.87 × 106

amples (19.04 MB). Once the characterizing tables are compiled
sing Runge–Kutta method (Forsythe et al., 1977; Cartwright and
iro, 1992), numerical calculation is almost not required during
etwork simulations. Then we evaluate the accuracy of the model
nd also validate its key features (bursting, rhythmic subthreshold
scillations and resonance).

. Experimental results

Here we show some illustrative simulations in which the
ehaviour of the cell model described in NEURON is compared with
he behaviour of the model compiled into tables and simulated
ith EDLUT (Ros et al., 2006). The presented model can reproduce

ynaptic activation of a granule cell. Activation of 1 and 2 synapses
akes subthreshold EPSPs which, in the immediately subthreshold
egion, become slower due to activation of persistent Na current.
ctivation of 3 synapses elicits a spike, which occurs with shorter
elay by activating 4 synapses (Fig. 2 (a)). Inhibitory synapses can
educe the EPSP and prevent firing (Fig. 2(b)). All these properties
re typical of granule cells (e.g. D’Angelo et al., 2005).
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ig. 2. Synaptic activation of a granule cell. (a) Membrane potential evolution when
.5 nS). (b) Membrane potential evolution when receiving a spike through an excitat
he excitatory synapse 1.5 nS, conductance of inhibitory synapse 0.5 and 1.0 nS).

If we focus on evaluating the dynamics of the cell model, we
ust consider: oscillatory, resonance and bursting behaviours.
All the simulation results generated with EDLUT require updat-

ng the neuron state variables (retrieving their values from the
UTs) only in certain simulation instants, these instants are marked
ith “X” on the plots. The simulation on EDLUT can efficiently jump

n time from one instant to the next one driven by input and output
eural events.

.1. Subthreshold rhythmic oscillations
The membrane potential evolution in the absence of high input
ctivity from other cells shows a rhythmic oscillatory behaviour
Fig. 3). This oscillatory state makes the neuron more sensitive
o input activity depending on the phase of this activity with

w
d
s
b
p

iving a spike through 1, 2, 3 or 4 excitatory synapses (conductance of each synapse
napse or through an excitatory synapse and an inhibitory synapse (conductance of

egard to the phase of the oscillation. Moreover, the coupling of
hose oscillations with the spiking mechanisms constitutes the
ase of the resonance behaviour. As shown in Fig. 3 this feature
as been captured into the characterizing tables in which EDLUT
imulator is based and therefore both implementations (on NEU-
ON and on EDLUT) produce equivalent subthreshold oscillatory
ehaviours.

Fig. 4 (a) shows how this subthreshold rhythmic oscillation can
lso take place when the neuron receives spike trains through exci-
atory synapses. In Fig. 4(b) it is shown how with specific synaptic

eights only excitatory spikes received in certain periods pro-
uce output spikes. This depends on the exact timing of these
pikes with respect to the subthreshold oscillations of the mem-
rane potential (therefore stimuli are selected depending on their
hase).



R.R. Carrillo et al. / BioSystems 94 (2008) 10–17 13

Fig. 3. Subthreshold oscillations of the membrane potential produced by a 4 pA current during 500 ms. (a) Simulation with the NEURON of the simplified model (Bezzi et al.,
2004). (b) Equivalent behavioural lookup tables of EDLUT.

Fig. 4. Simulation with EDLUT of subthreshold oscillations in response to input spike trains (neuron state variables are updated only at times marked with a cross). (a)
Subthreshold oscillations of the membrane potential produced by input spike trains. (b) Selection depending on the stimulus phase: The first three doublets are received in
the same phase of the membrane–potential oscillation (when the neuron is more resistant to fire), the last three doublets are received in a phase in which the neuron is more
susceptible to fire.
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Fig. 5. Simulation with EDLUT of bursting behaviour. Triplets in response to input spike trains of 95 Hz.

Fig. 6. Spike suppression. (a) Simulation with EDLUT of doublets in response to 100 Hz spike trains through 3 excitatory synapses of 0.5 nS. (b) The second spike of each
output doublet is suppressed due to the activation of the inhibitory synapse (conductance 5.0 nS) with a spike train of 100 Hz delayed 1 ms.
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.2. Bursting behaviour

The bursting behaviour of the granule cells seems to play an
mportant role in reliably transmitting significant stimuli. The effect
f short spike bursts (two or three spikes) into the target Purkinje
ells is significantly higher than single spikes (Coenen et al., 2007).
n Fig. 5 it is shown how the cell model is able to produce short
ursts in response to intense input activity. If a delay is introduced
etween excitation and inhibition spike trains, the second spike in
he output doublets is specifically prevented (Fig. 6).

.3. Resonance behaviour

In Fig. 7 (a) it is shown how injecting oscillatory currents
4–6cos(ω)pA) that match the resonance cell frequency (10 Hz)
roduces output spikes while injecting oscillatory input currents at

ther frequency (1 Hz) does not produce any output spike. Fig. 7(b)
hows the maximum membrane-potential (vm) depolarization
hen injecting the same oscillatory currents as before. Fig. 7(c)

hows the output-spike bursting frequency (fspk) in response to
he same input current. In Fig. 7(d) it is shown that this effect can be

t
m
m
t
t

ig. 7. Resonance behaviour. (a) Time-driven simulation of non-resonant frequency fil
embrane potential depending on the input-current frequency (action-potential generat

requency depending on the input-current frequency. (d) Simulation with EDLUT of input
ms 94 (2008) 10–17 15

lso observed when input spike trains with a certain spacing pro-
uce significantly higher responses (resonance). Therefore when
he input spike train tunes the inherent temporal dynamics of the
ell it generates more active responses.

. Accuracy validation

In this section we evaluate the accuracy of the model captured
n lookup tables that are used in the EDLUT approach. For this
urpose we run some reference simulations using intensive numer-

cal calculation (Euler method with a very short integration time
onstant (0.5 �s)) with the original differential equations of the
implified model Bezzi et al. (2004). After this, we perform the same
imulations in EDLUT. Finally we compare the output spike trains
btained by the two approaches calculating the van Rossum dis-

ance (van Rossum, 2001) normalized by the number of spikes (a

easure of the distance between two spike trains). In this way we
easure the difference between the EDLUT output spike train and

he one obtained with the original model using intensive calcula-
ion method.

tering. (b) Time-driven simulation showing the maximum depolarization of the
ion mechanism disabled). (c) Time-driven simulation showing the output bursting
-burst selectivity depending on quiescent period.
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To make the accuracy evaluation more informative we use three
00 Hz input spike trains (Poisson distribution with 0.8 standard
eviation). The results are shown in Fig. 8. The curve shown in
ig. 8(a) represents the van Rossumdistance (with a time con-
tant of 10 ms) (van Rossum, 2001), between the reference output
pike trains obtained using Euler integration method with a very
hort time step (0.5 �s) and other spikes trains generated by sim-
lations done with longer time steps. EDLUT simulator using the
ables described in Section 3, produces spike trains with 0.184 of
ormalized van Rossum distance. Fig. 8(b) illustrates how the out-
ut spike train calculated with Euler integration method highly
epends on the time step. EDLUT tables emulate the cell behaviour
btained with the Euler calculation with a short time constant
0.5 �s).

. Computation requirements and performance
EDLUT simulator allows efficient simulation of large-scale spik-
ng neural networks, since its performance (computation speed)
oes not depend on the network size but on the network activ-

ty. This simulator is especially suitable for neural structures with

F
G
i
t
B

nued).

parse coding. This is the case of the granular layer (Smith et al.,
000). We have simulated a medium-scale granular layer with
000 granule cells (and 4 Golgi cells) which produces sparse coding

n the parallel fibers (i.e. at the granule cell outputs). The network
eceives and generates around 800 external spikes per second and
roduces an internal activity of around 1 million of spikes per sec-
nd (encoded sparsely throughout the granular layer). Under these
onditions, we are able to compute around 1.8 Millions of spikes
er second (on an Intel Xeon CPU at 2.8 GHz), which reveals to
e better than real time. The granule-cell characterizing table con-
umes 4MB and the network topology consumes 2.5 MB of RAM.
he cell characterization tables take 5 s to be calculated (using the
unge–Kutta method) and this needs to be done only once before
he network simulations. This outstanding computing performance
an be exploited to address massive studies about how different
nput patterns or connecting weights affect the network behaviour.

or instance to study different levels of inhibition provided by the
olgi cells (Forti et al., 2006; Philipona and Coenen, 2004) or which

nput codes (through the mossy fibers) optimize the information
ransmission in this layer (D’Angelo et al., 2005; Coenen et al., 2007;
ezzi et al., 2006, 2004).
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ig. 8. Accuracy comparison. (a) Normalized van Rossum distance for the EDLUT
utput train and a simulation using Euler integration with different time steps. (b)
utput trains produced by EDLUT and Euler simulations of 0.5 and 0.6 �s.

. Discussion

We have implemented using an event-driven lookup-table
imulator, an integrate-and-fire neuron model with extended
ynamical properties to allow oscillatory, bursting and resonance
ehaviours. This allows the use of efficient event-driven simula-
ion engines such as EDLUT (Ros et al., 2006) to address large-scale
etwork simulations. We have validated the model reproducing
scillatory, bursting and resonance behaviours easily in different
xperiments. This validates the model and illustrates how cell
odels can be compiled into tables to allow simulations with

vent-driven schemes based on behavioural lookup tables. We
ave measured the accuracy of the implemented model with sev-
ral simulations comparing the results obtained through direct
umerical calculation with the ones obtained with the LUT-based
vent-driven scheme (EDLUT simulator). Finally we have evalu-
ted how this simulation engine achieves outstanding performance
hen simulating large-scale networks in which the activity is

parse (as happens in the granular layer). Future work will address
pecific network simulations to evaluate the impact of the cell
emporal dynamics in the network behaviour. Cell dynamics are
sually neglected in large-scale simulations. However we believe

hat these biological properties represent also a computational
ey factor to take into account. At the input stage of the cerebel-
um these properties could be involved in learning as well as in
etwork oscillations at theta frequency. The event-driven scheme,

mplemented in EDLUT simulator, represents a step toward real-

S

v

ms 94 (2008) 10–17 17

ime network simulations with a high degree of detailed biological
haracteristics.
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