
1050 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 17, NO. 4, JULY 2006

Real-Time Computing Platform for
Spiking Neurons (RT-Spike)

Eduardo Ros, Eva M. Ortigosa, Rodrigo Agís, Richard Carrillo, and Michael Arnold

Abstract—A computing platform is described for simulating
arbitrary networks of spiking neurons in real time. A hybrid com-
puting scheme is adopted that uses both software and hardware
components to manage the tradeoff between flexibility and compu-
tational power; the neuron model is implemented in hardware and
the network model and the learning are implemented in software.
The incremental transition of the software components into hard-
ware is supported. We focus on a spike response model (SRM)
for a neuron where the synapses are modeled as input-driven
conductances. The temporal dynamics of the synaptic integration
process are modeled with a synaptic time constant that results in a
gradual injection of charge. This type of model is computationally
expensive and is not easily amenable to existing software-based
event-driven approaches. As an alternative we have designed an
efficient time-based computing architecture in hardware, where
the different stages of the neuron model are processed in parallel.
Further improvements occur by computing multiple neurons in
parallel using multiple processing units. This design is tested using
reconfigurable hardware and its scalability and performance
evaluated. Our overall goal is to investigate biologically realistic
models for the real-time control of robots operating within closed
action-perception loops, and so we evaluate the performance of
the system on simulating a model of the cerebellum where the
emulation of the temporal dynamics of the synaptic integration
process is important.

Index Terms—Field-programmable gate arrays, pipeline pro-
cessing, real time system, spiking neural network hardware.

I. INTRODUCTION

Anumber of studies have investigated the use of event-driven
computation schemes for the efficient simulation of

spiking neurons [8], [31], [36]. The computation in these
schemes, the integration of presynaptic spikes and the gen-
eration of postsynaptic spikes, occurs only at the arrival of
each presynaptic spike; for efficiency each presynaptic spike
is generally processed in a single computational step. This
requires that two pieces of information can be fully determined
at the time that the synapse is activated. First is the effect of the
presynaptic spike on the membrane potential of postsynaptic
neurons, i.e., the synapse’s postsynaptic current profile (PSC).

Manuscript received November 11, 2004; revised November 10, 2005. This
work was supported by the European Union under Projects SpikeFORCE (IST-
2001-35271) and SENSOPAC (IST-028056) and by National Spanish Grant
DPI 2004-07032.

E. Ros, E. M. Ortigosa, R. Agís, and R. Carrillo are with the Depart-
ment of Computer Architecture and Technology, University of Granada,
Granada E-18071, Spain (e-mail: eduardo@atc.ugr.es; eva@atc.ugr.es;
ragis@atc.ugr.es; rcarrillo@atc.ugr.es).

M. Arnold is with CNL, Salk Institute of Biological Studies, La Jolla, CA
92037 USA (e-mail: mikea@salk.es).

Digital Object Identifier 10.1109/TNN.2006.875980

Second is the probability that the neuron fires in response to
the presynaptic spike. This imposes strong restrictions on the
types of neurons that can be simulated while still retaining the
efficiency of the event-driven approach, principally that the
synaptic time constant is sufficiently small that the PSC reaches
its maximal value within one computational time-step. This is
necessary to be able to accurately predict the occurrence of the
postsynaptic spikes. Voltage-dependent synapses [for example,
driven by N-Methyl-D-Aspartate (NMDA) receptors] are also
problematic as the PSC depends on the membrane potential.

We are interested in synchronization phenomena within
neural populations, for which important features are the tem-
poral dynamics of the synapses [9], [11], [12]. We focus on
the spike response model (SRM) for neurons [15] where a
synaptic time constant accounts for noninstantaneous synaptic
dynamics, i.e., for the gradual injection of charge in the mem-
brane potential due to a presynaptic spike. We also focus on
conductance-based synaptic interactions, even though it has
been pointed out that equivalent current networks can be built at
the cost of a different connectivity [25], [26]. We are interested
in neurophysiological studies [3], [14], [35] which investigate
the gradual injection of charge in conductance-based synaptic
interactions for cerebellar function [3], [14], [20]. A neural
model including gradual injection of charge is difficult to
simulate with standard event-driven approaches. Nevertheless,
it is worthwhile to mention that table-based approaches [37]
can be used—however, their memory costs are high. Other
event-driven schemes can be extended to include this feature at
a higher computational load since this requires managing “un-
certain events” [31]. Event-driven approaches represent a valid
choice when simulating spiking neural networks on single-pro-
cessor platforms. However, although these approaches take
full advantage of the sparse spiking activity of pulsed neural
networks, they are difficult to parallelize and therefore more
suitable for single processor platforms. The study of how to
implement parallel computing schemes for the simulation of
parallel networks better suits a time-driven approach, which
offers the additional bonus of being extensible to more biologi-
cally detailed and complex neural and synaptic models.

The standard integration approach is computationally inef-
ficient when using conventional computational architectures
(single- or multiprocessor platforms) [22]. Because of this,
some authors have addressed the implementation of specific
hardware platforms to perform the neural integration [17],
[23], [32], [40], [41]. These studies implement a specific type
of SRM according to the neuron model proposed by Eckhorn
et al. [10]. Here we present a hybrid hardware and software
simulation scheme for networks of SRM neurons. The novelty

1045-9227/$20.00 © 2006 IEEE

ROS et al.: REAL-TIME COMPUTING PLATFORM FOR SPIKING NEURONS 1051

TABLE I
IIR TEMPORAL FILTERS AS DEFINED BY EXPONENTIALLY DECAYING FUNCTIONS TOGETHER WITH THEIR APPROXIMATIONS. Output IS 1 WHEN THE NEURON

FIRES A SPIKE AND 0 OTHERWISE

of our approach is in the implementation of a spiking neuron
model i) that incorporates additional biophysically inspired
features such as spike-driven synapses modelled as conduc-
tances, ii) whose complexity can be easily scaled to include
further features as required by the application, and iii) that can
be used to run simulations in real time. Our aim is not to build
a general purpose neural accelerator for simply speeding up
simulations, but to build hardware for real-time experiments. To
this end, we have defined a well-structured hardware/software
communication protocol imposing strong restrictions in order
to achieve response times on the order of milliseconds.

Spiking neural networks are characterized by two different
features: 1) their activity and communication is based on spikes
(this motivates the simulation by event-driven schemes on single
unit processing platforms) and 2) their massive parallelism (this
motivates the exploration of parallel computing schemes as the
one presented in this contribution). The parallelization of time-
driven simulation schemes is possible, since the connection la-
tencies allow the parallel computation of different neurons on
a restricted number of processing units using time-slicing tech-
niques. The presented contribution focuses on a parallel simula-
tion platform whose performance increases with the number of
processing units. This is of interest in the framework of current
technology that allows the exploration of parallel computing
schemes. The performance of the presented platform is diffi-
cult to compare with event-driven approaches. Furthermore, the
ultimate goal of this contribution is not to directly outperform
these other approaches but rather to explore parallel computing
avenues (even on single chips) that are becoming possible due
to the continuously increasing number of processing resources
on single devices.

A simulation requires the definition of a network topology
(connection weights and transmission delays) and the cell
characteristics (temporal dynamics of its synaptic modules,
membrane capacitance, resting potential, and time constant),
which can be different for each neuron. The PSC is modeled as
a filter driven by a Dirac delta function centered at the time of
the occurrence of the presynaptic spike (see the expressions in
Table I). The current neuron model includes noninstantaneous
synaptic coupling to capture y-aminobutyric acid GABAergic
and A-Amino-5–hydroxy-3–methyl-isoxazole propionic acid

(AMPA) mediated temporal dynamics. We plan to incorpo-
rate further features in the neuron model, such as NMDA
channels, synaptic short-term dynamics [43], alternative/com-
plementary firing mechanisms, and intrinsic resonant properties
[21]. Our approach is based on reconfigurable hardware, i.e.,
field-programmable gate arrays (FPGA). This reprogrammable
technology facilitates the easy modification of the neural model
computed by the hardware platform. We present a pipelined
computing scheme where the stages are computed in parallel.
New computational features can be added as new circuits
working in parallel, so that increasingly the complexity of the
model does not increase the time taken to simulate a single
neuron. This is possible by taking advantage of the inherent
parallel computing resources of FPGA devices. The FPGA
technology that has been used in this approach embeds different
resources: i) general-purpose logic resources that can be cus-
tomized to design high performance data paths (as described
in Section IV-A) and ii) on-chip memory resources that can
be configured to allow parallel access to different data sets (as
described in Section IV-B).

In the following sections, we define the division between the
hardware and the software components, a detailed description
of the hardware implementation of the neural model and its par-
allelization, the utilization of hardware resources, and the per-
formance of the system. Our motivating objective is to investi-
gate biologically realistic models for the control of robots op-
erating within closed perception-action loops, which requires a
real-time computing platform with an integration time-step of
100 s or less. Hence we present initial results for the real-time
implementation of a model of the cerebellum applied to a simple
tracking task. Real-time processing at this time scale restricts the
size of the network that can be simulated (see Sections VI and
VII). The computing platform can also be used to accelerate the
simulation of larger scale networks if the real-time restriction is
relaxed.

II. COMPUTING SCHEME

We have developed a hybrid software–hardware computing
platform. The hardware component consists of an add-on board
providing memory resources and an FPGA device that works
as a reconfigurable neuroprocessor. The software component

1052 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 17, NO. 4, JULY 2006

Fig. 1. Software/hardware computing platform. The software simulates the
routing of spikes within the network and the learning. The hardware computes
the membrane potential and conductances of the neural model. An event-driven
communication scheme is adopted to connect both components.

runs on the host computer and the communication between the
two is via the PCI bus. Currently the hardware component is re-
stricted to computing the evolution of single-neuron state vari-
ables. The software component is responsible for maintaining
the network connectivity, for routing spikes between neurons,
and for learning (defined as the plasticity of maximal synaptic
efficacies). Communication between the hardware and software
components is restricted to spike events; the software compo-
nent sends packets of addressed presynaptic spikes to the hard-
ware and receives back packets of generated postsynaptic spikes
(see Fig. 1). The neural states are stored in the coprocessor board
and do not need to be communicated at each epoch.

The communication between the software and hardware com-
ponents is through packets of spike events. The software compo-
nent generates presynaptic events and the hardware component
generates postsynaptic events.

• Presynaptic events: Each presynaptic event is a structure
, where is the time of the event

relative to the current epoch given as an integer between
zero and (1), is the address of the postsynaptic or
target neuron, and are the synaptic efficacies.

• Postsynaptic events: Each postsynaptic event is a structure
Output , where is the time of the event relative
to the current epoch given as an integer between one and

, and is the address of the postsynaptic or gener-
ating neuron.

In the current implementation, each neuron can have two
types of synapses: one that is excitatory and one that is in-
hibitory. This will be extended in future implementations,
where the presynaptic event structure will have
replaced with , allowing a model with a variety of
distinct synaptic types such as AMPA, NMDA, GABAa, or
GABAb.

The communication is aggregated into epochs to reduce the
fixed costs of communicating over the PCI-bus. Each epoch con-
sists of simulation time cycles or time steps (typically 20
time steps of 100 s). The communication between the copro-
cessor board and the host computer occurs between epochs. The
presynaptic events for the next epoch are transferred from the
host computer to the coprocessor board, and the postsynaptic
spikes produced in the previous epoch are transferred back to
the host computer. In each epoch the number of neural states up-
dates to be computed is , where
is the number of neurons being simulated.

To minimize the time that hardware coprocessor spends
waiting, it is desirable to overlap the computation and commu-
nication within the software component. As the host is generally

a shared memory multiprocessor machine, an obvious choice
is to use threads and shared memory, with a separate thread for
1) routing of postsynaptic spikes through to presynaptic events,
2) communicating with the hardware coprocessor, and 3) any
learning that is required. To organize the parallelization, we
choose a variant of the bulk synchronous parallel programming
model (BSP) [19]. A BSP approach breaks a simulation into
epochs, where each epoch is divided in to three ordered phases:
1) simultaneous local computation within each processing unit,
2) communication of data between the processing units, and 3)
a barrier synchronization which makes all data transfers visible.
The aggregation that is present in the communication between
the software and hardware components is extended through to
the communication within the software component between the
threads. The last two steps of the BSP model are combined for
a threaded implementation. Each thread maintains a personal
copy of any read-write shared data, the management of which
occurs at the barrier (see Fig. 2).

Currently, the communication and computation within the
hardware coprocessor are sequential. Concurrent communica-
tion and computation within the software component introduces
a latency into the routing of a spike between two neurons that
is twice the epoch period [see Fig. 2(b)]. This latency must be
less than the minimum synaptic delay between two neurons. The
communication between the host and the coprocessor board is
done via the on-board memory banks (see Fig. 3). The FPGA
device reads events from these memory banks into the on-chip
memory resources and then writes back the generated postsy-
naptic events. This parallelization scheme does not constrain the
type of learning rule that can be implemented.

We have implemented a software emulator of the hardware
platform to be able to test the network configurations in com-
puters without the hardware accelerator. This software com-
ponent emulates the hardware at low level. It uses the same
computation and communication primitives, and so the results
obtained by this software component should be the same as
those obtained using the hardware board. The simulation system
passes the iterative computation of the neural states either to
the hardware component or to the software emulator. The soft-
ware emulation tool is used to validate the integer arithmetic in
the hardware platform. During the design stage, it is critical to
choose valid bit-widths for the different variables so as to avoid
significant differences between the results obtained by a sim-
ulation using floating-point arithmetic in a conventional com-
puter and those obtained by the hardware platform using integer
arithmetic.

III. NEURON MODEL

The chosen neural model consists of terms to calculate the
membrane potential together with a spike generation mecha-
nism [15]. For a neuron with excitatory and inhibitory synapses,
the subthreshold membrane potential is given by

(1)

ROS et al.: REAL-TIME COMPUTING PLATFORM FOR SPIKING NEURONS 1053

Fig. 2. Parallelization within the software component. (a) A multithreaded BSP-based implementation allocates separate threads (top three time-lines) for routing,
learning, and communication with the coprocessor. The bottom time-line represents the hardware coprocessor itself. Communication between threads is aggregated
into epochs s (consisting of n time steps), and occurs at the barrier where each thread’s copy of the shared data is updated. The barrier represents an explicit
synchronization that occurs every epoch. Communication and computation are overlapped within the overall system but are sequential within the coprocessor.
(b) Overlapping communication and computation introduces a latency in routing postsynaptic spikes (from epoch s) through to presynaptic spikes (for epoch
s). This latency is equal to twice the epoch period and must be less than the minimum synaptic delay.

is the time constant of the resting term, and are
the synaptic contributions, and is a gain term that modulates
the refractory period. and are the maximum and
minimum values of the membrane potential; i.e., the reversal
potentials for the excitatory and inhibitory synapses. is
the membrane resting potential. This follows SRM in which the
synapses are modelled as spike-driven conductance terms with
synaptic efficacies that depend on the time elapsed since the re-
ceived presynaptic spike (emulating the receptor mediated in-
jection of charge).

The neuron is implemented using a processing unit (see Fig.
4) with the following components.

• Two input infinite impulse response (IIR) spike response
filters that emulate noninstantaneous synaptic coupling
with different time constants (see Table I and Fig. 4):
for inhibitory GABAergic synapses and for excitatory
AMPA synapses.

• An integrator register that stores the postsynaptic potential,
which is computed at each time step using (1).

• One output IIR filter with the time constant that
controls the postfiring refractory period through the gain
term .

• One spike generation mechanism that generates spikes ac-
cording to the membrane potential. Our approach includes
a simple threshold crossing firing mechanism.

The dynamic terms , , and are given as IIR tem-
poral filters with time constants , , and . They are
modelled using the exponentially decreasing functions given in

the left column of Table I and implemented using the approxi-
mations given in the right column.

IV. PARALLEL COMPUTING STRATEGIES

A sequential implementation of the neuron model requires
17 time steps for all the computations. This is optimized by
adopting a design strategy that efficiently exploits the parallel
computing resources of FPGA devices.

A. Pipeline Computing

Implementing algorithmic parallelism, or pipelining, is a fre-
quently used technique in hardware design to reduce the number
of time steps needed to perform complex operations. In order
to exploit the inherent parallelism of the FPGA devices, we
have designed a pipelined computing structure with

stages (to ; see Fig. 5) that iteratively updates the neural
state variables. These stages are as follows.

1) State fetch: This stage retrieves the neural state for each
neuron from the neural state table [stored in the embedded
memory blocks (EMBs)]. This stage also takes the cell
input, which can be an input spike from the presynaptic
event table (stored in the EMB) or zero in the absence of
presynaptic events.

2) Neural computation I: Calculate the synaptic gain terms
using the IIR filters (and).

3) Neural computation II: Calculate the membrane potential

1054 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 17, NO. 4, JULY 2006

Fig. 3. Software/hardware communication scheme. We use on-board memory SRAM banks to interface the software and hardware components. All the neuron
variables (membrane potentials and conductances) are permanently stored in the on-board memory banks. The presynaptic events and postsynaptic events are
stored in a memory bank by the software and hardware components respectively. We use on-chip embedded memory resources as buffers to enable the parallel
processing of multiple circuits on the chip.

Fig. 4. Processing unit scheme. The presynaptic events are summed up in soft-
ware to reduce the communication costs. The computations indicated in this
diagram can be pipelined as described in the next section.

4) Neural computation III: Calculate the resting and refrac-
tory components and generate a postsynaptic spike if
required.

5) State write-back: Store the output spike and the neural state
in the tables.

It is worthwhile to note that further neural features such as
NMDA channels, firing threshold oscillations, etc., can be pro-
cessed in this pipeline structure in specific stages. Since all the
stages are computed in parallel, we could include new neural
features without degrading significantly the computation speed
by processing them in extra pipelined stages (provided that the

maximum number of cycles per stage is kept low). An illustra-
tive example of how to implement a more complex model in a
pipeline computing structure designed in FPGA is given in [16].

B. Scalability

Besides the internal parallelism of each data path, the com-
puting platform uses several processing units (PUs) in the
FPGA that run in parallel. We have adopted a scalable com-
puting scheme by splitting the embedded memory resources
into customized blocks assigned to different computing units.
In this way, all the processing units can access to their input
and write their output data in parallel as illustrated in Fig. 6.

Besides the processing units, there is another circuit
that works in parallel: the presynaptic event grabber (PEG) (Fig.
6). At each simulation time step or cycle, the processing units
compute new neural states for the presynaptic events and neuron
states stored in the embedded memory blocks. At the same time,
the PEG loads the events for the next cycle from the on-board
external memory (SRAM) into the embedded memory. This is
distinct to the communication that occurs with the host every
epoch.

To make the processing scheme scalable, each processing unit
has its own dedicated EMBs. In this way, the processing units
can in parallel access their input data, produce output spikes,
and update neuron states. A double buffer of EMBs is required
(termed and in Fig. 6). While the PEG writes the presy-
naptic events for the next simulation cycle into , the processing
units use the data for the current cycle from and write the new
neuron states for the next cycle into . In the next simulation
time cycle of the epoch, the tables and are switched. This is
repeated after each cycle until the end of the epoch.

The adopted event-driven communication scheme allows dis-
tributing the simulation engine into several chips properly ad-
dressing them within the communication protocol. This mul-
tiple-chip scheme enhances the scalability possibilities of the
platform beyond the capabilities of a single device. Other au-
thors [7], [48] have already explored similar schemes.

ROS et al.: REAL-TIME COMPUTING PLATFORM FOR SPIKING NEURONS 1055

Fig. 5. Pipeline structure. We define five pipeline stages. The computing cycles of each stage are indicated in the figure to show which ones are limiting the whole
computation speed.

Fig. 6. Parallelism at the level of processing units. The presynaptic event grabber (PEG) and the processing units run in parallel. The cycles consumed by the
PEG depend on the pre/postsynaptic events while the cycles consumed by the processing units depend on the number of simulated neurons (see Fig. 11). While
the PEG grabber is using input buffers a, the processing units are using input buffers b.

V. COMPUTATIONAL RESOURCES CONSUMPTION

The computational load described in Section III has been
distributed into different pipelined stages to allow parallel pro-
cessing along the datapath. The computational resources of each
of these stages are summarized in Table II. We have used the
RC1000 board of Celoxica [5] as prototyping platform to eval-
uate the computation scheme. This is a PCI board with four
banks of SRAM memory on board (2 MB each) and a Xilinx de-
vice with 2 million gates (Virtex-2000E) [49]. Table II summa-
rizes the hardware resources required for the whole computing
system with a single processing unit. The resource utilizations
given in Fig. 7 are estimates extracted from partial compilations
of the circuit. When the system is compiled as a whole, the al-
location of resources is optimized and there are hardware re-
sources that end up being shared across stages.

Table II shows that a complete single processing unit con-
sumes less than 25% of the hardware resources (slices), of the
device. We can implement up to four processing units running
in parallel on a single device as indicated in Figs. 8 and 9. Fig. 7
shows that stages and consume similar resources since
they are related with the data retrieval and output storage of
the pipeline structure. is the most expensive stage since it
includes two IIR filters computed in parallel (with their gain
terms). These multiplications require high precision (14 bits for
the input terms) to make the filters stable; hence this stage in-
cludes two fixed-point multipliers of 14 bits. Furthermore, this
stage needs to store the temporal states of the filters (two per
neuron), which requires significant memory resources. uses
the variable states of the other stages (reutilizing their memory
resources) and requires only additive computations. includes

1056 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 17, NO. 4, JULY 2006

TABLE II
COMPUTATIONAL RESOURCES OF A COMPLETE PIPELINED PROCESSING UNIT. TOTAL AMOUNT OF RESOURCES USED AND AS A PERCENTAGE OF THE XILINX

DEVICE XCV2000-E. THIS DEVICE INCLUDES ONLY GENERAL-PURPOSE PROCESSING CIRCUITRY (SLICES) AND EMBEDDED MEMORY RESOURCES (160 BLOCKS

OF 4 Kbits EACH). THIS PROCESSING UNIT IS ABLE TO COMPUTE SIX NEURONS IN PARALLEL USING A PIPELINE PROCESSING SCHEME

Fig. 7. Computational resources of each pipeline stage. Each bar represents the resources percentage of a single processing unit.

Fig. 8. Hardware resources consumed as the number of slices. Consumption grows with the number of processing units running in parallel on a single FPGA
device. We are able to allocate four processing units on the Virtex-2000E.

the output spike generation, the refractory gain term and the
resting term (which is done by shifting registers). requires
half of the memory resources of because in this stage only
the refractory state of each neuron needs to be stored.

The number of time steps consumed in each pipeline stage is
shown in Fig. 5 to indicate those stages that constrain the effective
speed of computation. Since all the stages work in parallel syn-
chronously, the data throughput is limited by the longest stage
(in this case). The longest pipeline stage consumes

(Fig. 5); each processing unit produces an updated
neuron state every steps. There is a latency () of 30 time
steps in computing a neuron state . If
is the clock frequency, the data throughput or number of neural
state updates per second is given by

(2)

For a circuit design with time steps and
MHz, then updates/s.

The computational resources to compute a network of 1024
neurons are detailed in Figs. 8 and 9. The hardware resources in-
crease with the number of processing units. The number of slices
increases approximately in a linear fashion (Fig. 8). Memory re-
sources increase slightly up until eight processing units, after
which there is a rapid increase (Fig. 9). Up until eight processing
units, the memory resources are efficiently used, while for higher
numbers of processing units, the memory resources are subopti-
mally managed because the number of neurons to be simulated in
each processing unit is small, given a total network size of 1024
neurons. Using the FPGA of the RC1000 prototyping platform,
we have implemented and tested the system with 1024 neurons
and are able to place up to four cores on the chip.

The on-chip resources do not depend on the number of neu-
rons simulated or the number of input/output spikes. This is so

ROS et al.: REAL-TIME COMPUTING PLATFORM FOR SPIKING NEURONS 1057

Fig. 9. Embedded memory resources consumed. For fewer than four processing units, the memory resources required barely increase, because the EMBs are fully
used. For more than eight processing units, the increment is much more significant because the EMBs are being suboptimally utilized for this network size.

because they are stored into on-board memory resources and
they are transferred to the FPGA in packets. Nevertheless, the
process that communicates with this on-board memory (presy-
naptic event grabber in Fig. 6) has a cost in time that depends
on the number of input/output events that are transferred. This
is illustrated in the next section in Fig. 11.

VI. COMPUTING PERFORMANCE

In Section II, we described the computing scheme based on
epochs of time cycles. This computing strategy reduces the
communications over the PCI-bus. The time taken by the hard-
ware to compute each epoch is given by

(3)

where is the computing time of the time cycle
, is the number of time steps to com-

pute time cycle , and is the clock frequency. The presy-
naptic event grabber and the processing units are working in
parallel (Fig. 6) and the slowest limits the effective computing
speed. is given by

MAX

MAX

(4)

On one hand, the time taken by the PEG is variable, as
it depends on the number of presynaptic events received for
that cycle and the number of time steps needed
to take an event from the external memory to the embedded
memory . On the other hand, the time taken
by the processing units is fixed and depends on the number of
neurons , the number of processing units ,
the number of time steps of the longest stage of the pipeline

structure , and the latency .
The computing time of each epoch can be given as

(5)

Assuming that the processing units take longer than the
presynaptic event grabber, and choosing the following con-
figuration— cycles, neurons,

time steps, and MHz—then the time
taken by the hardware using a single processing unit to compute
one epoch is ms. The total time to compute an
epoch is greater, including the time to communicate the pre-
and postsynaptic events and the time to share data between and
synchronize the threads in the software component.

A suitable integration step for biologically plausible neurons
based on the chosen neuron model is 100 s. For a simulation
to be in real time, an epoch of 20 time cycles must be com-
puted in less than 2 ms. To achieve this we use several com-
puting processing units in parallel. The performance results in
Fig. 10 show how the computing time decreases with the number
of processing units (given for 1024 neurons, 20 time cycles per
epoch, an integration time step of 100 s, and variable num-
bers of presynaptic events). The results show that the design is
scalable and the processing inherently parallel when the number
of presynaptic events is not too high. If the number of presy-
naptic events is too high, then the speed is limited by the PEG.
If all the neurons receive presynaptic events in each cycle of the
epoch (the worst case scenario in Fig. 10), then the PEG limits
the data throughput and the evaluation time is almost indepen-
dent of the number of processing units. If no presynaptic events
are received in an epoch (the best case scenario in Fig. 10), then
the speed of the processing units limits the data throughput, and
the design is perfectly scalable. Note that the best case curve
follows exactly an exponential function in which the computing
time is divided by two as the number of processing units is dou-
bled.

1058 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 17, NO. 4, JULY 2006

Fig. 10. Scalability study. The cost per epoch is given for 1024 neurons, 20 cycles/epoch, computed at 25 MHz, with varying number of presynaptic events (worst
case has 20 480 presynaptic events, best case has zero presynaptic events). The cost omits the transmission time through the 100 MB/s PCI bus using DMA (0.2
ms for 1024 presynaptic events and 0.3 ms for 2048 presynaptic events).

Fig. 11. Scalability study. Given for 1024 neurons, 20 cycles/epoch, and 25 MHz. The cost (omitting transmission time over the PCI bus) depends on the maximum
of the cost for the presynaptic event grabber and cost for the processing units, as these processes run in parallel. The optimal configuration is with four processing
units handling up to 4096 presynaptic events in real time.

Further illustration is given in Fig. 11, which plots the cost in
time for each of the two parallel processes. The cost of the presy-
naptic event grabber depends on the number of events (bottom
axis). The cost of the processing units depends on the number
of processing units running in parallel (top axis). This plot il-
lustrates that the coprocessor board can compute 1024 neurons
in real time when receiving fewer than 6144 presynaptic events
per epoch (one epoch is 20 time-steps of 100 s of simulated
time—for real time, each epoch needs to be computed in less
than 2 ms). The optimal configuration is with four processing
units on the chip processing 4096 presynaptic events per epoch.

The costs given in Figs. 10 and 11 omit the transmission time
through the PCI bus [100 MB/s of measured bandwidth using
direct memory access (DMA)]. The output events transmission
time is almost insignificant (1024 output events take about 0.1
ms). The maximum number of output events per epoch is lim-
ited to the number of simulated neurons. On the other hand, the
communication time for the input events is significant (0.3 ms

for 2048 presynaptic events and 0.6 ms for 4096). These trans-
mission times need to be taken into account when determining
the true capacity of the hardware coprocessor.

VII. REAL-TIME CEREBELLAR SIMULATIONS

The performance of the system is dependent on the network
connectivity and the load given as the number of presynaptic
events per epoch. It is therefore important to test its performance
within a biologically realistic context. For this we simulate
a model of the olivary-cerebellar system applied to a simple
tracking task (visual smooth pursuit). Movement in one dimen-
sion is modelled using two olivary-cerebellar microcircuits,
each representing movement in opposite directions. Details of
the number of cells, their connectivities and their parameters
are given in Table III. Full details of the model and its applica-
tion to visual smooth pursuit are given in [1]. Of significance
to this discussion are the following points. First, the number
of connections to each neuron varies greatly. The cerebellum

ROS et al.: REAL-TIME COMPUTING PLATFORM FOR SPIKING NEURONS 1059

TABLE III
TYPES AND PARAMETERS FOR THE OLIVARY-CEREBELLAR MODEL

does not represent a heterogeneous network of neurons, but
contains both extremely low and extremely high patterns of
connectivity. Each granule cell receives fewer than ten inputs,
while each Purkinje cell receives hundreds of thousands. Sec-
ondly, the number of presynaptic events per epoch (and the
computational load) is widely distributed in the simulations
as shown in Fig. 12(a). The cells in the inferior olive fire at
around 1 Hz, those in the granular layer appear to be mostly
silent with short bursts up to 100 Hz, and the Purkinje cells may
average around 80 Hz. Thirdly, the cerebellum is an example
of a brain system that needs to be modelled in real time. The
cerebellum is involved in the fine control and coordination
of timed movement (amongst much else) but its exact role in
the brain is unknown. The simplified and artificial version of
the smooth pursuit problem used for this demonstration of the
hardware can be easily simulated and is not a difficult task for
the cerebellum to learn. Providing the realistic and sufficiently
rich context that will be needed to elucidate cerebellar function
implies being able to study cerebellar models operating in real
time in the real world.

All of the neurons are calculated in the coprocessor, except
for the mossy fiber and feedback inputs. They encode the infor-
mation about the smooth pursuit task, such as eye position and
movement as well as the retinal slip or movement of the target
on the retina. These analog sensory signals are translated into
spike trains, and the spike trains outputted from the cerebellar
nuclei are translated back into analog signals using software.
The model was built to explore the role of climbing fiber-mod-
ulated plasticity in the cerebellar cortex and nuclei in cerebellar
learning. It uses a spike timing dependent Hebbian algorithm
for plasticity at the parallel fiber to Purkinje cell synapses, at
the mossy fiber to cerebellar nuclear cell synapses, and at the
mossy fiber to granule cell synapses. The performance, how-
ever, is measured after the learning has stabilized and the plas-
ticity rule is inactivated, to ensure that it is bound by the per-
formance of the FPGA coprocessor. The details of the learning
are given in [1]. The learning is significant to this paper only in
that it configures the model to have a realistic activity profile.

The speedup with the hardware coprocessor over a software co-
processor is given in Fig. 12(b). The total number of cells in the
model is varied by changing the number of granule cells.

Besides robot control, cerebellar-like control schemes are
being applied also for other real-world applications [27].

VIII. DISCUSSION

We have described a hybrid hardware–software platform for
the realtime simulation of spiking neurons based on the spike
response neural model including a gradual injection of charge
and synapses modelled as input-driven conductances. This com-
putation scheme is without any of the restrictions on the model
imposed by current event-driven schemes. The hardware copro-
cessor is based on reconfigurable hardware (FPGA), and we
have adopted a computing strategy that makes exhaustive use
of the processing parallelism resources of the FPGA device. In
particular, we have designed a pipeline processing scheme with
a data throughput of six clock cycles. Furthermore, we have seg-
mented the memory resources to make the processing system
scalable. In this way, several processing units can run efficiently
in parallel (avoiding a data access bottleneck).

Different hardware and software accelerators for simulating
spiking neural networks simulations are difficult to compare
since the time resolution of the integration, their objectives, and
the neuron models are all different. Compared to other specific
computing platforms [17], [23], [32], [40], [41], our approach
addresses the simulation of smaller scale networks but with
a higher time resolution (100 s). The primary difference is
that we are interested in real-time (as opposed to simply faster)
simulations, as the motivation of this paper is to investigate
real-world closed-loop sensorimotor systems (robotic plat-
forms) where real-time processing is critical. Other specific
hardware neural implementations based on analog VLSI tech-
nology addressed applications related with dynamic clamping
[29], [30]. These approaches aim real-time interactions be-
tween hardware-based neural models and biological neurons,
therefore building artificial and biological hybrid networks
in vitro for specific tissue characterization studies. The time

1060 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 17, NO. 4, JULY 2006

Fig. 12. Performance on cerebellar model. (a) The number of presynaptic
spikes per neuron per epoch for the cerebellar model with 242 granule cells
applied to a tracking task. (b) The speedup of the hardware coprocessor over a
software coprocessor with respect to the total number of neurons.

restrictions of that application domain are very exigent, but the
network size and topology flexibility are not so important. Our
simulation platform has been designed for robotic applications
and sensorimotor studies. Here the capability of simulating dif-
ferent network topologies of small and medium size is critical.
Furthermore, the possibility of easily testing different networks
for specific processing tasks makes FPGA technology the best
choice for our approach.

Our software/hardware hybrid computing scheme enables the
simulation of heterogeneous networks, since the topology is de-
fined and simulated in the software components. As described
in Section II (Fig. 2), three processes run concurrently in the
host. The routing component consults network topology and
translates postsynaptic spikes into presynaptic spikes incorpo-
rating the connection weight and delay. Another module dedi-
cated to the communication with the hardware board takes into

account these connection delays and accumulates coincident
presynaptic spikes addressing the same target neuron in order
to utilize the limited software–hardware communication band-
width. This scheme allows the simulation of neural networks
with distance depending spike transmission delays which is of
specific importance when simulating the neural structure in the
olivary-cerebellar system. For example, the parallel fibers to
Purkinje cell synapses have specific delay distributions and the
conductance speed for the climbing fibers is adjusted for the ax-
onal length to ensure that all fibers have a fixed delay [44].

We have chosen a neuron model with synapses modelled
as input-driven conductances. This increases the computa-
tional complexity and requires multiplication circuits that are
a limited resource on the FPGA. Nevertheless, in our current
pipeline processing architecture, this feature is not limiting the
global computation speed (i.e., the time to compute a single
neuron), which is bound by the input noninstantaneous synaptic
coupling (in Fig. 5). This synaptic model (input-driven
conductance) is an important feature to study different aspects
of cerebellar processing [2], [4], [33]. Network mechanisms
such as neuronal gain modulation at the granular layer [33]
modelled by means of a shunting inhibition require cell models
with synapses modelled as variable conductances.

The cell model includes the gradual injection of charge in
the synaptic modules. This feature allows the study of synchro-
nization processes. How synchronization arises from specific
topology [12], [28], [50] instead of intrinsic cell synchronization
mechanisms is an important topic. Several studies have demon-
strated that synchronization between reciprocally connected in-
hibitory neurons is facilitated by their finite connections delays
and the gradual injection of charge at the synapses [13], [47], al-
though other mechanisms, such as gap junctions, seem to play a
complementary role [24]. This finite connection delay separates
the generation of the action potential in one of the cells from the
peak of the synaptic inhibition in the paired cell [28].

FPGA technology has experienced great advances in recent
years and is continuously evolving. We have described the
circuits with a high-level hardware description language [45],
which facilitates the efficient management of the memory and
computational resources. The design is modular and can be
easily customized with different levels of parallelism.

With the current prototyping platform (RC1000) we can
implement up to four processing units and compute in real time
(with an integration time step of 100 s) up to 1024 neurons
receiving 4096 presynaptic events. But we have studied the
scalability of the system and the design can be easily adapted
to more powerful devices for real time computing of larger
neural systems. We have also tested the computing scheme
using a RC2000 [5], where we can implement 18 processing
units on a single FPGA (of 6000 million gates) being able to
compute 90 neurons in parallel (due to the five-stage pipeline
processing scheme). With this prototyping board we obtain a
speed up of three with respect to the RC1000, depending on the
network size. Both of the tested platforms are general purpose
prototyping boards. Higher improvements (we would estimate
speedups of one order of magnitude) are expected with custom
boards (currently under design) incorporating higher memory
resources and communication bandwidth.

ROS et al.: REAL-TIME COMPUTING PLATFORM FOR SPIKING NEURONS 1061

With the current approach the average network activity is
critical, i.e., if the number of presynaptic events received is too
high the “computing” time increases. With a short integration
time step (100 s in the experiments of Section VII) the
activity per time step will be low. In the cerebellar model,
the average number of presynaptic spikes per neuron per
2 ms time step is 2.4 (see also [4] and [6]). In fact, the
presented approach uses an iterative computing strategy in the
FPGA and an event-driven communication scheme between
the host and the coprocessing board. This iterative computing
mode allows the exploration of specific issues difficult to
track within an event-driven computing scheme. Among these
issues are different waveforms of neurotransmitters release
probability functions and short-term plasticity, which we plan
to address in future work. On the other hand, the event-driven
communication scheme takes full advantage of the limited
bandwidth. The computing scheme is fully scalable, even though
the analysis of the consumption of resources is based on a
specific prototyping platform and a reduced number of neurons.
There are two main factors that limit the scalability to very
large scale simulations: i) the software/hardware communication
bandwidth (that motivates the future use of PCI-X boards) and
ii) the limited computing parallelism (that increases with more
powerful FPGA devices, provided that the on-chip computing
scheme is scalable).

The goal of the approach in this paper is the real-time simu-
lation of small- and medium-scale networks. This imposes re-
strictions on the simulation time resolution and the number of
presynaptic events. In the current computation scheme, the max-
imum number of neurons that can be simulated depends on the
on-board available memory. We are currently developing cir-
cuit modules to work with DDRAM circuits. This allows one
to scale the network size up to 64 10 neurons using 1 GB
on-board memory, while the number of synaptic connections
would be limited by the host computer memory resources. The
speedup gained with such a platform compared with a fully soft-
ware simulation has been illustrated with small-scale networks
in Fig. 12. Parallelization of large-scale simulations on clusters
of computers with embedded acceleration boards is under study
but estimating the speedup in this scenario is speculative, as
it depends on different factors such as the network topology,
host loads, and internode communication rates. An advantage
of the design is that the different elements of the computation,
such as the learning, the routing of spikes, and the computation
of metrics, can be moved to the hardware coprocessor as they
mature. This frees the host CPUs to handle the communication
between nodes in a distributed memory system. Currently, the
performance bottleneck in the system is imposed by the use of a
general-purpose prototyping board (RC1000). Having tested the
feasibility and applicability of the presented computing scheme,
we have started the design of a purpose-specific FPGA-based
board. It includes a state-of-the-art FPGA device as the main
computing element, increased on-board memory resources and
enhanced PCI-based communication bandwidth.

The comparison of the proposed computing platform with
event-driven simulation schemes is not easy, since the adopted
neuron model implements mechanisms for the gradual injection
necessary for defining synapses with different time constants.

This feature is difficult to incorporate into an event-driven sim-
ulation schemes although some approaches are exploring this
possibility with different restrictions [37], [40].

The presented software/hardware approach provides high
flexibility to explore different learning strategies at a system
level. As commented in Section IV, the neuron model can
be scaled up to higher levels of complexity, incorporating
features such as voltage dependent active channels mediated by
NMDA receptors, synaptic short-term dynamics, etc. Further
circuits can be added to compute these features in parallel.
The pipeline-processing scheme provides a significant benefit
in that extra computing stages, for example, plasticity, can be
added without increasing the per neuron computation time.
One problem is that the routing and learning are currently
performed on the host computer, which limits the size and
the complexity of the model. Using our current software
framework and a standard dual-processor workstation, Hebbian
plasticity in any more than 5% of the synapses will result
in loss of performance. This emphasizes the importance of
embedding the learning and the routing of spikes onto the
FPGA, exploiting its inherent computing parallel resources. It
is not straightforward since it requires the network topology
to be stored and managed onboard [18], [32]. This will
be future work, once we have built a coprocessor board
with sufficiently large memory resources.

Real-time simulations have a long-term significance for neu-
robiological models in general and cerebellar models in par-
ticular. Models of networks away from the sensory and motor
periphery and with more than a handful of cells are inevitably
hugely under constrained. One solution is to use heterogeneous
models that combine constraints at multiple levels of abstrac-
tion. Another approach is to evaluate the model within a larger
model of a semicomplete biological system, where the model-
ling is informed by the utility and the behavior of the overall
system and where the interactions between the components im-
pose constraints. Real-time modelling is perhaps not important
for the study of much behavior in this context, for example, rea-
soning. The cerebellum, however, has critical roles in the dy-
namic integration of sensorimotor signals necessary for finding
motor coordination, and studying this issue with real agents re-
quires a real-time model. The choice of a neuron with synapses
modelled as variable conductances was made to accommodate
related work. In this, detailed biophysical conductance-based
models are constructed based on the electrophysiology of the
different types of cells in the cerebellum [34], [39], [42], [46].
These models are too expensive to investigate large-scale net-
work properties, and so simplified conductance-based models
are being derived that will run on the described hardware plat-
form. The goal is to take detailed biophysical characterizations
and to identify key functional properties of each cell at the net-
work and systems level.

Our long-term motivation for embedding routing and learning
onto the hardware platform is to investigate biological senso-
rimotor integration and control systems operating in the real
world. This work is one step towards a neuromorphic senso-
rimotor system, i.e., the goal of embedding a complete spiking
neural system including all the sensor and actuator subsystems
into a stand-alone robotic platform.

1062 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 17, NO. 4, JULY 2006

REFERENCES

[1] M. Arnold, “Feedback learning in the olivary-cerebellar system,”
Ph.D. dissertation, Dept. Comp. Sci., Univ. Sydney, Sydney, Australia,
2001.

[2] M. Berends, R. Maex, and E. De Schutter, “A detailed three-dimen-
sional model of the cerebellar granular layer,” Neurocomput., vol.
58–60, pp. 587–592, 2004.

[3] M. Bezzi, T. Nieus, O. J.-M. Coenen, and E. D’Angelo, “An integrate-
and-fire model of a cerebellar granule cell,” Neurocomput., vol. 58–60,
pp. 593–598, 2004.

[4] C. Boucheny, R. Carrillo, E. Ros, and O. J.-M. D. Coenen, “Real-time
spiking neural network: An adaptive cerebellar model,” Lecture Notes
Comput. Sci., vol. 3512, pp. 136–144, 2005.

[5] Celoxica, Hardware Platforms 2001–2004 [Online]. Available: http://
www.celoxica.com

[6] O. J.-M. D. Coenen, M. Arnold, T. Sejnowski, and M. Jabri, “Parallel
fibre coding in the cerebellum for life-long learning,” Auton. Rob., vol.
11, no. 3, pp. 291–297, 2001.

[7] V. Dante, P. Del Giudice, and A. M. Whatley, “Hardware and soft-
ware interfacing to address-event based neuromorphic systems,” Neu-
romorph. Eng., vol. 2, no. 1, pp. 5–6, 2005.

[8] A. Delorme and S. Thorpe, “SpikeNET: An event-driven simulation
package for modelling large networks of spiking neurons,” Network
Comput. Neural Syst., vol. 14, pp. 613–627, 2003.

[9] R. Eckhorn, R. Bauer, W. Jordan, M. Brosh, W. Kruse, M. Munk,
and H. J. Reitboeck, “Coherent oscillations: A mechanism of feature
linking in the visual cortex?,” Biol. Cyber., vol. 60, pp. 121–130,
1988.

[10] R. Eckhorn, H. J. Reitboeck, M. Arndt, and P. Dicke, “Feature linking
via stimulus evoked oscillations: Experimental results from cat visual
cortex and functional implication from a network model,” in Proc.
ICNN I, 1989, pp. 723–720.

[11] ——, “Feature linking via synchronization among distributed assem-
blies: Simulations of results from cat visual cortex,” Neural Comput.,
vol. 2, pp. 293–307, 1990.

[12] R. Eckhorn, A. M. Gail, A. Bruns, A. Gabriel, B. Al-Shaikhli, and M.
Saam, “Different types of signal coupling in the visual cortex related
to neural mechanisms of associative processing and perception,” IEEE
Trans. Neural Netw., vol. 15, no. 5, pp. 1039–1052, Sep. 2004.

[13] U. Ernst, K. Pawelzik, and T. Geisel, “Synchronization induced by tem-
poral delays in pulse-coupled oscillations,” Phys. Rev. Lett., vol. 74, pp.
1570–1573, 1995.

[14] D. Gall, F. Prestori, E. Sola, A. D’Errico, C. Roussel, L. Forti, P. Rossi,
and E. D’Angelo, “Intracellular calcium regulation by burst discharge
determines bidirectional long-term synaptic plasticity at the cerebellum
input stage,” J. Neurosci., vol. 25, pp. 4813–4822, 2005.

[15] W. Gerstner and W. Kistler, Spiking Neuron Models. Cambridge,
U.K.: Cambridge Univ. Press, 2002.

[16] E. L. Graas, E. A. Brown, and R. H. Lee, “An FPGA-based approach
to high-speed simulation of conductance-based neuron models,” Neu-
roinf., vol. 2, pp. 417–435, 2004.

[17] G. Hartmann, G. Frank, M. Schaefer, and C. Wolff, “SPIKE128K—An
accelerator for dynamic simulation of large pulse-coded networks,” in
MicroNeuro’97, 1997, pp. 130–139.

[18] H. H. Hellmich and H. Klar, “SEE: a concept for an FPGA based emu-
lation engine for spiking neurons with adaptive weights,” in 5th WSEAS
Int. Conf. Neural Networks Applications (NNA ’04), Udine, Italy, 2004,
pp. 930–935.

[19] J. Hill, W. McColl, D. Stefanescu, M. Goudreau, K. Lang,
S. Rao, T. Suel, T. Tsantilas, and R. Bisseling, “BSPlib: The
BSP programming library,” Parallel Comput., vol. 24, no. 14,
pp. 1947–1980, 1998.

[20] M. Ito, The Cerebellum and Neural Control. New York: Raven, 1984.
[21] E. M. Izhikevich, “Which model to use for cortical spiking neurons?,”

IEEE Trans. Neural Netw., vol. 15, no. 5, pp. 1063–1070, Sep. 2004.
[22] A. Jahnke, T. Schoenauer, U. Roth, K. Mohraz, and H. Klar, “Sim-

ulation of spiking neural networks on different hardware platforms,”
in ICANN97, 1997, vol. 1327, Lecture Notes Comput. Sci., pp.
1187–1192.

[23] A. Janke, U. Roth, and H. Klar, “A SIMD/dataflow architecture for a
neurocomputer for spike-processing neural networks (NESPINN),” in
Proc. MicroNeuro’96, 1996, pp. 232–237.

[24] N. Kopell and B. Ermentrout, “Chemical and electrical synapses per-
form complementary roles in the synchronization on interneuronal net-
works,” Proc. Nat. Acad. Sci. USA, vol. 101, no. 43, pp. 15482–15487,
2004.

[25] G. La Camera, W. Seen, and S. Fusi, “Equivalent networks of conduc-
tance- and current-driven neurons,” Lecture Notes Comput. Sci., vol.
2714, pp. 449–452, 2003.

[26] ——, “Comparison between networks of conductance- and current-
driven neurons: stationary spike rates and subthreshold depolarization,”
Neurocomput., vol. 58–60, pp. 253–258, 2004.

[27] C. M. Lin and Y. F. Peng, “Missile guidance law design using adaptive
cerebellar model articulation controller,” IEEE Trans. Neural Netw.,
vol. 16, no. 3, pp. 636–644, May 2005.

[28] R. Maex and E. De Schutter, “Resonant synchronization in heteroge-
neous networks of inhibitory neurons,” J. Neurosci., vol. 23, no. 33, pp.
10503–10514, 2003.

[29] S. Le Masson, A. Laflaquiere, T. Bal, and G. Le Masson, “Analog
circuits for modeling biological neural networks: Design and applica-
tions,” IEEE Trans. Biomed. Eng., vol. 46, no. 6, pp. 638–645, Jun.
1999.

[30] G. Le Masson, S. R. Le Masson, D. Debay, and T. Bal, “Feedback
inhibition controls spike transfer in hybrid thalamic circuits,” Nature,
vol. 417, pp. 854–858, 2002.

[31] M. Mattia and P. Del Giudice, “Efficient event-driven simulation of
large networks of spiking neurons and dynamical synapses,” Neural
Comput., vol. 12, pp. 2305–2329, 2000.

[32] N. Mehrtash, D. Jung, H. H. Hellmich, T. Schoenauer, V. T. Lu, and
H. Klar, “Synaptic plasticity in spiking neural networks (SP INN):
A system approach,” IEEE Trans. Neural Netw., vol. 14, no. 5, pp.
980–992, Sep. 2003.

[33] S. J. Mitchell and R. A. Silver, “Shunting inhibition modulates neu-
ronal gain during synaptic excitation,” Neuron, vol. 38, no. 3, pp.
433–445, 2003.

[34] Z. Nusser, S. Cull-Candy, and M. Farrant, “Differences in synaptic
GABA(A) receptor number underlie variation in GABA mini ampli-
tude,” Neuron, vol. 19, no. 3, pp. 697–709, 1997.

[35] D. Philipona and O. J.-M. D. Coenen, “Model of granular layer en-
coding in the cerebellum,” Neurocomput., vol. 58–60, pp. 575–580,
2004.

[36] J. Reutimann, M. Giugliano, and S. Fusi, “Event-driven simulation of
spiking neurons with stochastic dynamics,” Neural Comput., vol. 15,
pp. 811–830, 2003.

[37] E. Ros, R. R. Carrillo, E. M. Ortigosa, B. Barbour, and R. Agís, “Event-
driven simulation scheme for spiking neural networks using look-up
tables to characterize neuronal dynamics,” Neural Comput., 2006, ac-
cepted for publication.

[38] R. R. Carrillo, E. Ros, B. Barbour, C. Boucheny, and O. Coenen,
“Event-driven simulation of neural population synchronization facili-
tated by electrical coupling,” Biosyst., 2006, accepted for publication.

[39] D. J. Rossi and M. Hamann, “Spillover-mediated transmission at in-
hibitory synapses promoted by high affinity alpha6 subunit GABA(A)
receptors and glomerular geometry,” Neuron, vol. 20, no. 4, pp.
783–795, 1998.

[40] T. Schoenauer, S. Atasoy, N. Mehrtash, and H. Klar, “NeuroPipe-chip:
A digital neuro-processor for spiking neural networks,” IEEE Trans.
Neural Netw., vol. 13, no. 1, pp. 205–213, Jan. 2002.

[41] M. Shaefer, T. Schoenauer, C. Wolff, G. Hartmann, H. Klar, and U.
Rueckert, “Simulation of spiking neural networks—Architectures and
implementations,” Neurocomput., vol. 48, pp. 647–679, 2002.

[42] R. A. Silver, D. Colquhoun, S. G. Cull-Candy, and B. Edmonds, “De-
activation and desensitization of non-NMDA receptors in patches and
the time course of EPSCs in rat cerebellar granule cells,” J. Physiol.,
vol. 493, no. 1, pp. 167–173, 1996.

[43] L. S. Smith and D. S. Fraser, “Robust sound onset detection using
leaky integrate-and-dire neurons with depressing synapses,” IEEE
Trans. Neural Netw., vol. 15, no. 5, pp. 1125–1134, Sep. 2004.

[44] I. Sugihara, E. J. Lang, and R. Llinas, “Unifrom olivocerebllar conduc-
tion time underlies Purkinje cell complex spike synchronicity in the rat
cerebellum,” J. Physiol., vol. 470, pp. 243–271, 1993.

[45] Celoxica, Technical library [Online]. Available: http://www.celoxica.
com/techlib/default.asp

[46] S. Tia, J. K. Wang, N. Kotchabhakdi, and S. Vicini, “Developmental
changes of inhibitory synaptic currents in cerebellar granule neurons:
Role of GABA (A) receptor alpha 6 subunit,” J. Neurosci., vol. 16, no.
11, pp. 3630–3640, 1996.

[47] C. van Vreeswjik, L. F. Abbott, and G. B. Ermentrout, “When inhibi-
tion not excitation synchronizes neural firing,” J. Comput. Neurosci.,
vol. 1, pp. 313–321, 1994.

[48] R. J. Vogelstein, U. Mallik, and G. Cauwenberghs, “Beyond event-
driven communication: dynamically-reconfigurable spiking neural sys-
tems,” Neuromorph. Eng., vol. 1, no. 1, pp. 1, 9, 2004.

ROS et al.: REAL-TIME COMPUTING PLATFORM FOR SPIKING NEURONS 1063

[49] Xilinx, FPGA devices 1994–2003 [Online]. Available: http://www.
xilinx.com

[50] B. Yu and L. Zhang, “Pulse-coupled neural networks for contour and
motion matchings,” IEEE Trans. Neural Netw., vol. 15, no. 5, pp.
1186–1201, Sep. 2004.

Eduardo Ros received the Ph.D. degree from the
University of Granada, Granada, Spain, in 1997.

He is currently an Associate Professor in the De-
partment of Computer Architecture and Technology
at the same university. There, he is responsible for
two European projects related with bioinspired pro-
cessing schemes. His research interests include sim-
ulation of biologically plausible processing schemes,
biomedical signal processing, hardware implementa-
tion of digital circuits for real-time processing in em-
bedded systems, and computer vision.

Eva M. Ortigosa received the Ph.D. degree in com-
puter engineering from the University of Málaga,
Málaga, Spain, in 2002.

She was with the Computer Architecture De-
partment, University of Málaga, from 1996 to
2002. Since then, she has been with the Computer
Architecture and Computer Technology Department,
University of Granada, Granada, Spain. Her current
areas of research interest are in the fields of neu-
romorphic engineering, FPGA implementation of
neural-like systems, spiking neuron models and syn-

chronization processes, bioinspired processing systems, and neural networks.

Rodrigo Agís received the M.S. degree in computer
science from the University of Granada, Granada,
Spain, in 2003.

He is currently a Research Assistant with the De-
partment of Computer Architecture and Technology
at the same university. He has long experience de-
signing control outlines for robots. He is also inter-
ested in robot mechatronics and real-time processing
architectures. His current research work is related to
the design of processing schemes and bioinspired cir-
cuits, reconfigurable hardware, and implementation

of digital circuits for real-time processing in embedded systems.

Richard Carrillo received the M.S. degree in
computer science from the University of Granada,
Granada, Spain, in 2002, where he is currently
working toward the Ph.D. degree in computer
engineering.

His work involves developing efficient computa-
tion engines for the simulation of large biological
neural networks in real time. Among his research
interests are spiking neural networks and the study
of perception-action loops in biological systems.

Michael Arnold received the Ph.D. degree in com-
puter science from the University of Sydney, Sydney,
Australia, in 2002.

He is currently a Postdoctoral Fellow with the
Computational Neurobiology Laboratory, Salk
Institute for Biological Studies, San Diego, CA,
and is a Partner with Altjira SA, Switzerland. His
research interests include development and learning
in autonomous sensorimotor systems, simulation
of biological systems, and software for modeling
complex systems.

