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bstract—Traditionally studies aimed at elucidating the mo-
ecular mechanisms underlying cerebellar motor learning
ave been focused on plasticity at the parallel fiber to Pur-
inje cell synapse. In recent years, however, the concept is
merging that formation and storage of memories are both
istributed over multiple types of synapses at different sites.
ere, we examined the potential role of potentiation at the
ossy fiber to granule cell synapse, which occurs upstream

o plasticity in Purkinje cells. We show that null-mutants of
MDA-NR2A receptors (NMDA-NR2A�/� mice) have impaired

nduction of postsynaptic long-term potentiation (LTP) at the
ossy fiber terminals and a reduced ability to raise the gran-
le cell synaptic excitation, while the basic excitatory output
f the mossy fibers is unaffected. In addition, we demonstrate
hat these NR2A�/� mutants as well as mutants in which the

terminal in the NR2A subunit is selectively truncated
NR2A�C/�C mice) have deficits in phase reversal adaptation
f their vestibulo-ocular reflex (VOR), while their basic eye
ovement performance is similar to that of wild type litter-
ates. These results indicate that NMDA-NR2A mediated po-

entiation at the mossy fiber to granule cell synapse is not
equired for basic motor performance, and they raise the
ossibility that it may contribute to some forms of vestibulo-
erebellar memory formation. © 2011 Published by Elsevier
td on behalf of IBRO.

Correspondence to: C. I. De Zeeuw, Department of Neuroscience,
rasmus MC, Dr. Molewaterplein 50, PO Box 1738, 3000 DR Rotter-
am, The Netherlands.
-mail address: c.dezeeuw@erasmusmc.nl (C. I. De Zeeuw).
bbreviations: DNA, deoxyribonucleic acid; EPSP, excitatory postsyn-
ptic potential; GABAA, A subunit of the gamma-aminobutyric acid
eceptor; LTP, long-term potentiation; NMDA, N-methyl D-aspartate
eceptor; NMDA-NR2A, NR2 subunit of the NMDA receptor; OKR,
ptokinetic reflex; PCR, polymerase chain reaction; SEM, standard
t
rrors of the mean; VOR, vestibulo-ocular reflex; VVOR, visually-
nhanced vestibulo-ocular reflex.
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variety of disturbances, such as developmental malfor-
ations, disease, or fatigue, can lead to aberrations in
otor performance, and often these factors induce sec-
ndary processes in the brain, which allow us to adapt and

imit the performance errors to a certain level. Such sec-
ndary compensatory processes usually employ the same

earning mechanisms as those used during our daily ac-
uisition of new motor skills, and they are generally medi-
ted by various forms of neuronal plasticity, which are
ften located at multiple sites. For example, many studies
n cerebellar motor learning indicate that formation and
torage of procedural memory is situated in at least two
ites including the Purkinje cells of the cerebellar cortex
nd their target neurons in the cerebellar and vestibular
uclei (for reviews see Lisberger, 1998; De Zeeuw and
eo, 2005). More recent studies have raised the possibility

hat the granular layer of the cerebellum also contributes to
rocedural memory formation, because the mossy fiber to
ranule cell input has been demonstrated to show NMDA-
ediated long-term potentiation (LTP) in vitro (D’Angelo et
l., 1999; Armano et al., 2000; Maffei et al., 2002, 2003;
ossi et al., 2002; Sola et al., 2004; Mapelli and D’Angelo,
007). However, the possible contribution of this latter form
f plasticity to motor learning has yet to be confirmed in

ntact awake behaving animals, which show otherwise a
ormal motor coordination.

NMDA receptors are heteromeric ligand-gated ion
hannels assembled from two families of subunits. Until
ow two types of NR1 (a–b), four types of NR2 (A–D) and
wo types of NR3 (A–B) subunits have been described
Llansola et al., 2005). Most NMDA receptors contain two
R1 and two NR2 subunits (Premkumar and Auerbach,
997). In the developing cerebellum NMDA receptors can
ccur in multiple types of cells and they play a crucial role

n their differentiation (Rabacchi et al., 1992; Komuro and
akic, 1993). During this process NR1a and NR2B are
radually replaced by NR1b and by NR2A or NR2C, re-
pectively (Cathala et al., 2000; Llansola et al., 2005). In
he mature cerebellar cortex NMDA receptors are most
bundantly expressed in granule cells, in which they are
ormed by NR2A and NR2C subunits (Watanabe et al.,
994; Piochon et al., 2007; Renzi et al., 2007). The C-
erminal of these subunits can interact with proteins in the
ostsynaptic density, which retains the NMDA receptor at

he synapse and mediates interactions between signal
RO.
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AQ: 4
ransduction molecules downstream (Llansola et al.,
005). The NMDA receptors in granule cells control high-
requency repetitive neurotransmission by enhancing and
rotracting membrane depolarization during excitatory
ostsynaptic potential (EPSP) trains and they allow the

nduction of LTP through postsynaptic calcium entry
D’Angelo et al., 1999; Armano et al., 2000; Maffei et al.,
002, 2003; Rossi et al., 2002; Sola et al., 2004; Mapelli
nd D’Angelo, 2007). Thus, in the adult cerebellum NMDA
eceptors play a central role in both basic synaptic trans-
ission and plasticity at the mossy fiber to granule cell

ynapse (D’Angelo et al., 1990, 1993, 1994, 1995, 1997).
To find out whether a disruption of NR2A leads to

ltered synaptic plasticity at the mossy fiber-granular cell
ynapse, and, if so, whether such a deficit can be associ-
ted with an impairment in motor performance and/or mo-

or learning, we tested granule cell responses and com-
ensatory eye movements in null-mutant mice that lack the
MDA-NR2A receptor (NR2A�/�) (Sakimura et al., 1995;
adotani et al., 1996; Kishimoto et al., 1997; Zhao and
onstantine-Paton, 2007). Plasticity in the granular layer
as investigated following high-frequency stimulation of
ossy fibers (HFS; 100 Hz for 1 s), while cerebellar motor
erformance and motor learning were investigated by
tudying the optokinetic reflex (OKR), vestibulo-ocular re-
ex (VOR), visually-enhanced vestibulo-ocular reflex
VVOR) as well as adaptation following visuo-vestibular
raining (Stahl et al., 2000; Andreescu et al., 2005).

EXPERIMENTAL PROCEDURES

ubjects

n this study, we used seven NMDA-NR2A�/� mutant mice and 10
f their wild type littermates for electrophysiological recordings
nd eight NMDA-NR2A�/� mutant mice and nine of their wild type

ittermates for behavioural studies (Sakimura et al., 1992). In
ddition, we employed seven NMDA-NR2A�C/�C mutant mice and
0 of their wild type littermates for comparison (Sprengel et al.,
998; Rossi et al., 2002). Mice were housed on a 12 h light/dark
ycle with food and water available ad libitum. All experiments
ere performed without any knowledge of the genotype and all
nimal procedures described were in accordance with the rules of
he local ethical committee.

enotyping

ice were genotyped by PCR analysis. Briefly, DNA was extracted
rom tail biopsies (Purelink Genomic DNA Kits-Invitrogen Srl), frozen
t �80 °C, and PCR was performed on 2 �g DNA using specific
rimers for NR2A�/� mice (Primer PGK Prom2: 5’-CAGACTGCCT-
GGGAAAAGCG-3’; Primer 2AIN10N*do: 5’-GGGAATTCGCGGC-
GCAAGAGCAAGAAGACTCC-3’; Primer 2AIN11x*up: 5’-GGAG-
TACCTCGAGCTCTTCTACAG-3’). Same technique was used for
R2A�C/�C mice (Primer rsp26: 5’-AGAAGCTAATGTACCTGAGG-
’; Primer rsp25: 5’-ATCTGCCAGACACTGCTCCAG-3’). An initial
enaturation of 3 min at 96 °C was followed by 20 s at 96 °C, 30 s at
5 °C and 75 s at 72 °C for 35 cycles. A final extension of 10 min at
2 °C was performed with the Taq Polymerase Eurobiotaq. The
olecular weight of the PCR products was compared to the DNA
olecular weight marker VIII (Roche Molecular Biochemicals, Italy).
he bands acquired with the Image Master VDS (Amersham Bio-
cience Europe) were at the expected size of 1100 bp for NR2A�/�
nd 580 bp for NR2A�/� (Fig. 1). w
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lectrophysiological recordings

hole-cell patch-clamp recording was performed as previously
eported (D’Angelo et al., 1995, 1999; Armano et al., 2000). Lon-
itudinal slices (220 �m thick) of the cerebellar flocculus and
odulus were prepared from mice 18–22 days old using a Vi-
ratome (Dosaka, Kyoto, Japan) and cold Krebs solution contain-

ng 120 mM NaCl, 2 mM KCl, 2 mM CaCl2, 1.9 mM MgSO4, 1.18
M NaH2PO4, 26 mM NaHCO3, and 10 mM glucose (pH 7.4,
quilibrated with 95% O2 and 5% CO2). After slicing, the slices
ere incubated for at least 1 h at room temperature (20–23 °C) in
xygenated Krebs solution. For P 40–50 slices, Krebs solution for
utting and recovery was modified as reported by Goldfarb and
restori to improve tissue viability (Goldfarb et al., 2007; Prestori
t al., 2008). Whole-cell patch-clamp recordings were performed
sing a recording chamber mounted on the stage of an upright
icroscope (Zeiss, Oberkochen, Germany). The Krebs solution
sed for slice perfusion (1–1.5 ml/min) was supplemented with 10
M bicuculline (Sigma) and 500 nM strychnine (Sigma) to block
ABAA and glycine receptors. Patch pipettes were pulled from
orosilicate glass capillaries (Hilgenberg, Malsfeld, Germany),
nd, when filled with the intracellular solution, had a resistance of
–9 M� before seal formation. The recording electrodes were
lled with a solution containing 126 mM K-gluconate, 4 mM NaCl,
mM HEPES, 15 mM glucose, 1 mM MgSO4, 0.1 mM BAPTA-

ree, 0.5 mM BAPTA-Ca2�, 3 mM Mg2� -ATP, and 0.1 mM Na�

GTP (pH 7.2 adjusted with KOH). This solution maintained rest-
ng free [Ca2�] at 100 nM.

Recordings were made with an Axopatch 200B amplifier (Mo-
ecular Devices, Union City, CA, USA) at 32 °C (D’Angelo et al.,
995, 1997, 2001; D’Angelo and Rossi, 1998). All recordings were
ade at a cutoff frequency of 10 kHz and subsequently digitized
t 20 kHz using Clampex 9 in combination with Digidata1200B
nalog-to-digital converter (Molecular Devices). Just after obtain-

ng the cell-attached configuration, electrode capacitive transients

ig. 1. PCR analysis of NR2A receptor in the NR2A�/� and wild type
ice. Gel electrophoresis of PCR products taken from wild type mice

wt) and NR2A�/� mice (ko). The 1100 and 580 bp bands are indicated
t the right of the panel, and correspond to the wild type and knockout
CR products, respectively. Mw, molecular weight.
ere carefully cancelled to allow for electronic compensation of

of the N-methyl D-aspartate receptors are required for poten-
ar motor learning, Neuroscience (2011), doi: 10.1016/j.neuro-
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F2-3
ipette charging during subsequent current clamp recordings
D’Angelo et al., 1995; D’Angelo and Rossi, 1998).

The mossy fiber bundle was stimulated with a coaxial tung-
ten electrode (Clark Instruments, Pangbourne, UK) via a stim-
lus isolator using 200 �s pulses at a basal frequency of 0.33
z. According to previous measurements (Sola et al., 2004),
e stimulated between one and two mossy fibers per granule
ell. A step current protocol was used to monitor intrinsic ex-
itability. The resting membrane was set at �80 mV, and 800
s or 2 s steps of current with �8 to 48 pA in 2 or 4 pA

ncrements were injected (Armano et al., 2000). After evoking
PSPs at basal frequency for 10 min (control period) synaptic
lasticity was induced from a membrane potential of �50 mV by
elivering a stimulus train at 100 Hz for 1 s (HFS). After
etanization, the recording was returned to the basal mossy
ber stimulation frequency. The stability of recordings can be

nfluenced by modification of series resistance and neurotrans-
itter release. To ensure that series resistance remained sta-
le during recordings, passive cellular parameters were moni-
ored throughout the experiments.

ehavioral testing

ll mice used were males and they were 12–20 weeks old.
hree days before behavioral testing, a prefabricated piece
quipped with two nuts was cemented to the skull to allow
xation of the mouse’s head in a restrainer device. The surgical
rocedures were performed under general anesthesia using a
ixture of isofluoran (Isofloran 1–1.5%; Rhodia Organique Fine
td) and oxygen. During the experiment the mouse was placed

n a restrainer, with the head fixed above the center of the
urntable. A cylindrical screen (diameter 63 cm) with a random-
otted pattern (each element 2o) surrounded the turntable (di-
meter 60 cm), and both the screen and turntable were driven

ndependently by AC servomotors (Harmonic Drive AC, the
etherlands). The table and drum position signal were mea-
ured by potentiometers, filtered (cut-off frequency 20 Hz),
igitized (CED Limited, UK) and stored on a computer. A CCD
amera was fixed to the turntable to monitor the mouse’s eye
sing an eye-tracking device of ISCAN (Iscan Inc.). Both video
alibrations and subsequent eye movement computations were
erformed as described previously (Andreescu et al., 2007).
ngular OKR, VOR and VVOR were evoked by rotating the
urrounding screen, the turntable in dark and the turntable in

ight, respectively (rotations of 0.2–1 Hz at 5o rendering a
elocity of 6.3–31.4 deg/s). Before measuring the VOR pilo-
arpine (4%; Laboratories Chauvin, France) was used in order
o limit the pupil dilatation in darkness. Gain and phase of the
ye movements were calculated according to standard proce-
ures (Stahl, 2002). VOR adaptation was evoked by using
�10 min of visuo-vestibular mismatch training during three
onsecutive days. On the first day, VOR gain decrease was
nduced by subjecting the animals to 5�10 min of sinusoidal
estibular and visual stimuli that were rotating exactly in phase
table and drum �5o; 0.6 Hz); on the second day VOR phase
eversal was induced by subjecting the animals to 5�10 min
inusoidal vestibular and visual stimuli that were rotating in
hase, while the amplitude of the visual stimuli was increased
o 7.5o (table 0.6 Hz, �5o; drum 0.6 Hz, �7.5o); and on the third
ay, VOR phase reversal was completed by subjecting the
nimals also to 5�10 min sinusoidal vestibular and visual
timuli that were rotating in phase, but now the amplitude of the
isual stimuli was increased to 10o (table 0.6 Hz�5o; drum 0.6
z�10o). VOR was measured every day before the training and
fter each 10 min of training (�5o; 0.6 Hz). Mice were kept in

omplete darkness in between the daily measurements. e
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tatistical tests

ata are presented as mean�SEM. n refers to the number of
ice. For statistical comparisons we used the two-way ANOVA
ith repeated measures and Student’s t-test (SPSS 11.0 Inc.).

RESULTS

bsence of long-term synaptic plasticity in granule
ells of the vestibulo-cerebellum in NR2A�/� mice

ransmission at the mossy fiber to granule cell synapse
as investigated by whole-cell patch clamping from
ranule cells in cerebellar slices obtained from NR2A�/�

nd wild type mice. EPSPs were elicited before and after
etanization with high-frequency stimulation train (HFS).
PSPs elicited by mossy fiber stimulation could either

emain sub-threshold or be combined with spikes form-
ng EPSP-spike complexes (Figs. 2 and 3). Recordings
ere obtained from juvenile adult mice (P18 –P22) as
ell as at a later stage (P45–P50) when cerebellar
aturation is complete (e.g. see Goldfarb et al., 2007;
restori et al., 2008).

At all ages, in the cerebellar slices obtained from wild
ype mice, tetanization increased the EPSP amplitude, the
roportion of EPSP-spike complexes, and the number of
pikes per EPSP (Figs. 2A–C and 3A–C). The amplitude
hange of the EPSPs that did not generate spikes after
etanization was 29.6�4.5% in juvenile mice (n�4;
�0.05, paired Student’s t-test) and 48.4�13.7% (n�4;
�0.03, paired Student’s t-test) in adult mice. In the wild

ypes, the probability of EPSP-dependent firing increased
emarkably both in juvenile mice (from 13.7�6% before to
7.1�16% after tetanization; n�6; P�0.01, paired Stu-
ent’s t-test) and in mature mice (from 3.0�1.6% before to
3.8�17.1% after tetanization; n�7; P�0.05, paired Stu-
ent’s t-test). Thus, mossy fiber-granule cell synapses of
he vestibulo-cerebellum can make LTP similarly to those
f other parts of the cerebellar vermis (Armano et al., 2000)
nd hemispheres (Roggeri et al., 2008).

The picture was different in the cerebellar slices ob-
ained from NR2A�/� mutants. In juvenile mice, after tet-
nization, the EPSP amplitude change was 6.3�8.8%
n�3; P	0.5, paired Student’s t-test; Fig. 2C) and the
robability of EPSP-dependent firing did not show any
emarkable change (from 14.7�10.1% before to
9.6�27% after induction; n�5; P	0.8, paired Student’s
-test; Fig. 2B). The difference between wild types and
R2A�/� was statistically significant after tetanization

P�0.005, Student’s t-test). In mature mice, after tetaniza-
ion, the EPSP amplitude change was �11.6�11.4%
n�4; P	0.45, paired Student’s t-test; Fig. 3C), while the
robability of EPSP-dependent firing increased signifi-
antly (from 2.25�0.6% before to 26.2�20.1% after induc-
ion; n�4; P�0.05, paired Student’s t-test; Fig. 3B). The
ifference after tetanization between wild types and
R2A�/� was not statistically significant (P	0.6, Student’s

-test). Therefore, probably some changes occurred in in-
rinsic excitability (Armano et al., 2000). It should be noted
hat, whereas the ability to generate a spike was recov-

red, the granule cell output pattern remained deficient,

of the N-methyl D-aspartate receptors are required for poten-
ar motor learning, Neuroscience (2011), doi: 10.1016/j.neuro-
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ince the neurons were usually unable to generate more
han one spike (Figs. 2B and 3B).

The possibility that changes in intrinsic excitability
ight differentially regulate EPSP-spike coupling in
R2A�/� mutants during development was assessed by
easuring the granule cell input resistance. Membrane
otential changes were caused by current steps in the 10
V potential range either below �70 mV (Rin-low) or above
70 mV (Rin-high). In the wild types, after tetanization, the

hange of Rin-high was 58.1�14.9% in juvenile mice (n�4;
�0.05, paired Student’s t-test) and 48.0�16.4% in adult

ig. 2. Synaptic and non synaptic plasticity at the mossy fiber–granule
efore and after mossy fiber tetanization (100 Hz for 1 s) in wild type (w
rom �70 mV (several traces are superimposed). Note the marked inc
B) The plots on the left show the change in the probability of firing in
rains were delivered at time 0 and the action potential threshold in the
PSP-spike complexes after tetanization, whereas no noticeable incre
f spikes (singlet, doublet, triplet, quadruplet) generated in each EPSP
han one spike, while this does not usually occur in the NR2A�/� mic
hereas no amplitude change is observed in NR2A�/� cells. Only E

esponses elicited from �80 mV in wild types (wt) and NR2A�/� mice (
ollowing induction, whereas the NR2A�/� cell shows no remarkable
ange (��70 mV) and in the high potential range (	�70 mV). Note tha
table in both cases in the low potential range.
ice (n�4; P�0.05, paired Student’s t-test; Figs. 2E and s
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E). It should be noted that Rin-low remained unchanged in
ll ages, providing an internal control for recording stability.
n NR2A�/� mutants, after tetanization, both Rin-high

nd Rin-low increased remarkably only in adult mice
50.9�6.4% and 52.4�7.7%, respectively; n�4, P�0.05),
hereas in juvenile mice Rin-high and Rin-low did not show
ny increase (0.7�8.0% and �2.0�3.9%, respectively;
�4, P	0.8; Figs. 2E and 3E). Therefore, the partial re-
overy observed in EPSP-spike coupling following tetani-
ation can be explained by the increased input resistance.

In conclusion, mossy fiber-granule cell long-term

y: P18–P22 mice. Responses recorded from granule cells are shown
2A�/� mice (ko). (A) EPSPs and EPSP-spike complexes were elicited

EPSP-spike complexes in the wild types but not in NR2A�/� mutants.
types and NR2A�/� mice during induction experiments (the induction
s is indicated). The wild type EPSPs show a persistent potentiation of
served in the NR2A�/�. The histogram on the right shows the number
mplex after tetanization. Note that wild type mice can generate more
increase in EPSP peak amplitude is observed in the wild type cells,

maining subthreshold have been used for the average. (D) Voltage
A steps current injection. The wild type cell shows an increase of firing
(E) Granule cell input resistance (Rin) measured in the low potential
ase in the high potential range in wt but not in ko mice, while it remains
cell rela
t) and NR
rease in
the wild
two cell

ase is ob
-spike co

e. (C) An
PSPs re

ko) to 2 p
increase.
ynaptic plasticity is impaired in the vestibulo-cerebel-
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F4
um of both juvenile and mature NR2A�/� mutants, al-
hough a partial recovery can be observed in the mature
utants.

ye movement performance is not impaired in
R2A�/� mice

R2A�/� mice were subjected to vestibular stimulation to
nvestigate the amplitude (gain) and timing (phase) of their
ngular VOR, while a whole field visual stimulus was used

ig. 3. Synaptic and non synaptic plasticity at the mossy fiber–granul
efore and after mossy fiber tetanization (100 Hz for 1 s) in wild type (w
rom �70 mV (several traces are superimposed). Note the much str
utants. (B) The plots on the left show the change in the probability o

nduction trains were delivered at time 0 and the action potential thresho
otentiation of EPSP-spike complexes after tetanization than the NR2
riplet, quadruplet) generated in each EPSP-spike complex after tetan
oes not usually occur in the NR2A�/� mice. (C) An increase in EPSP p

s observed in NR2A�/� cells. Only EPSPs remaining subthreshold ha
t and ko mice to 2 pA steps current injection. Both the wild type and

nput resistance (Rin) measured in the low potential range (��70 mV)
otential range in wt but not in ko mice, while it increases in both cas
o investigate the gain and phase of their OKR and VVOR. i
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OR gain values of NR2A�/� mice (n�8) ranged from
.20�0.02 to 0.75�0.06 over the tested frequency band
0.2–1 Hz), while those of wild type littermates (n�9)
anged from 0.17�0.02 to 0.75�0.03; these differences
ere not significant (P	0.2; two-way ANOVA; Fig. 4A).
ollowing this turntable stimulation at 0.2–1 Hz phase

eads of NR2A�/� mice ranged from 27.2�6.0 to 14.0�0.9
egrees, while those of their wild type littermates varied
rom 25.1�8.4 to 10.5�2.6 degrees; these were no signif-

y: P45–P50 mice. Responses recorded from granule cells are shown
2A�/� mice (ko). (A) EPSPs and EPSP-spike complexes were elicited
rease in EPSP-spike complexes in the wild types than in NR2A�/�

the wild types and NR2A�/� mice during induction experiments (the
two cells is indicated). The wild type EPSPs show a stronger persistent

histogram on the right shows the number of spikes (singlet, doublet,
ote that wild type mice can generate more than one spike, while this
litude is observed in the wild type cells, whereas no amplitude change
used for the average. (D) Voltage responses elicited from �80 mV in
/� cell show an increase of firing following induction. (E) Granule cell
e high potential range (	�70 mV). Note that Rin increases in the high
low potential range.
e cell rela
t) and NR
onger inc
f firing in
ld in the

A�/�. The
ization. N
eak amp
ve been
NR2A�
cant difference (P	0.4; two-way ANOVA; Fig. 4B). Simi-
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F5

T1
arly, the OKR and VVOR of the NR2A�/� mice also
howed no significant deficits in gain or phase over the
ntire frequency range (0.2–1 Hz; P	0.3 for all gain and
hase comparisons; two-way ANOVA; Fig. 4). Thus, we
onclude that NR2A�/� mutant mice show no abnormali-
ies in motor performance when the vestibular and visual
ystems are investigated separately or when they operate
ogether, as under natural conditions.

eficits in motor learning in NR2A�/� mutant mice

o assess motor learning capabilities in NR2A�/� mice,
e subjected them to a paradigm that was meant to reduce

he gain of the VOR (day 1) and to subsequently reverse
he VOR phase (days 2 and 3). VOR gain adaptation was
tudied on day 1 by presenting perfectly in phase drum and
able rotations each with an amplitude of 5° at 0.6 Hz. VOR
hase reversal was studied on days 2 and 3 by increasing

A
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0.8
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Frequency (Hz)

Gain

Wt 
Ko 

ig. 4. NMDA-NR2A�/� mutant mice show no motor performance de
OR (diamonds), OKR (circles) and VVOR (squares) at stimulus freque

wt). (B) Plots of phase values (i.e. phase eye velocity–phase stimulus
ype littermates. Empty symbols represent mutant mice, while filled sym
eferences to color in this figure legend, the reader is referred to the

0

0.2

0.4

0.6

0.8

1

day 1 day 2 day 3

A

Time

Gain

ig. 5. NMDA-NR2A�/� mutant mice show a deficit in phase reversal
able stimulation (both at 5°; 0.6 Hz). On days 2 and 3 gain adaptatio
.6 Hz (day 2) and 10° at 0.6 Hz (days 3) in phase with the table (5°; 0.
ice (ko) and control mice (wt) during these 3 d of training. (B) NMDA-
uring the VOR in the same direction as the table instead of in the op

ere not able to consolidate the phase changes from day 1 to day 2 and from

he references to color in this figure legend, the reader is referred to the Web
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he amplitude of the in-phase drum rotations to 7.5° and
0°, respectively, while the table rotation parameters were
aintained (0.6 Hz; 5°). When the adaptation was tested
n day 1 no significant differences in gain reduction were
bserved among NR2A�/� (n�8) and control mice (n�9)
P	0.3, two-way ANOVA; Fig. 5A). Moreover, when the
easurements were resumed after mice spent 24 h in
arkness, the gain in NR2A�/� mice was also similar to

hat of their wild type littermates indicating that they also do
ot show any difference in gain consolidation (P	0.3,
tudent’s t-test). Thus, NR2A�/� mice show a normal
apacity for gain-decrease motor learning as well as for
ain consolidation. However, when the phase leads were
easured on the second and third day of training,
R2A�/� mice showed a significantly smaller phase
hange than the wild types (in both cases P�0.05; two-
ay ANOVA; Table 1, Fig. 5B). Possibly, these differences
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Frequency (Hz)

Phase

resentations of gain values (i.e. eye velocity/stimulus velocity) of the
ging from 0.2 to 1 Hz in NMDA-NR2A�/� mice (ko) and wild type mice

in degrees) of eye movements in NMDA-NR2A�/� mice and their wild
resent wild type mice. Data are mean�SEM. For interpretation of the
ion of this article.

*
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day 1 day 2 day 3

Phase

Time

*

On day 1 short-term adaptation was studied using in phase, drum and
reversal and consolidation were studied by rotating the drum 7.5° at
We observed no difference in gain reduction among NMDA-NR2A�/�

mice were able to reverse their phase values (i.e. to move their eyes
irection), but not as prominently as wild types. NMDA-NR2A�/� mice
B
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version of this article.
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ere partly due to a difference in phase consolidation,
ecause the level of phase changes carried forward from
he previous day was significantly smaller in NR2A�/�

ice (P�0.05 for both days, Student’s t-test; Fig. 5B).
hus, NR2A�/� mice were able to reverse the phase of

heir VOR, but not as prominently as wild types, and they
id, unlike wild types, not show any significant sign of
hase consolidation overnight.

R2A�C/�C mice show same phenotype as
R2A�/� mice

ince the C-terminal of NR2A subunits can interact with
roteins in the postsynaptic density, which retains the
MDA receptor at the synapse and mediates interactions
etween signal transduction molecules downstream (Llan-
ola et al., 2005), we wanted to find out whether truncation
f this domain was sufficient to induce the learning deficits
escribed above. Moreover, complete deletion of the
R2A subunits as in the NR2A�/� mice might have in-
uced various secondary compensations, which them-
elves might have contributed to the learning deficits in
hase reversal. We therefore subjected mice with just a
runcated C-terminal in the NR2A subunit (NR2A�C/�C

ice) to the same paradigms as the NR2A�/� mice (Ka-
otani et al., 1996; Sprengel et al., 1998). The NR2A�C/�C

ice showed the same phenotype as the NR2A�/� mice in
hat they showed no deficits in motor performance or in
otor learning during the 1-day gain decrease training,
hile they did show significant deficits in the subsequent
-day phase reversal learning (Fig. 6). All significance

evels of the comparisons of the gain and phase VOR,
KR and VVOR motor performance values between
R2A�C/�C mice (n�7) and controls (n�10) were higher

han 0.1 over the entire frequency range from 0.2 Hz to 1.0
z (two-way ANOVA), while the significance level of that

or the VOR gain decrease learning paradigm was higher
han 0.2 (two-way ANOVA; Table 1). In contrast, the
R2A�C/�C mice showed, just like the NR2A�/� mice de-
cribed above, significantly smaller phase changes than
he wild types on the 2 days of phase reversal training
phase difference on day 2, P�0.02; and on day 3,
�0.03, two-way ANOVA; Table 1, Fig. 6D). Interestingly,

he differences in levels of consolidation overnight be-

able 1. Statistics during and following learning paradigm

Mutant Two-way ANOVA

ain NMDA-NR2A�/� mice Test of within sub
Test of between s

NMDA-NR2A�C/�C mice Test of within sub
Test of between s

hase NMDA-NR2A�/� mice Test of within sub
Test of between s

NMDA-NR2A�C/�C mice Test of within sub
Test of between s

All P values of two-way ANOVA tests of between and within subje
ittermates.
ween the NR2A�C/�C mice and controls showed the same s
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rend as described above for the NR2A�/� mutants, but
hese differences were not significant (Fig. 6D; P	0.1,
tudent’s t-test). These data obtained in the NR2A�C/�C

ice suggest that the C-terminal of the NR2A subunit is
ecessary for a normal level of phase reversal learning.

DISCUSSION

ere we investigated the functional role of the NR2A sub-
nit in glutamatergic transmission between mossy fibers
nd granule cells as well as the effects of NR2A deficiency
n motor behavior. We show that NR2A is necessary for
he induction of LTP at the mossy fiber to granule cell
ynapse, that basic eye movement performance and gain-
ecrease learning do not require NR2A activation, and that
R2A activation is necessary for optimal phase reversal

earning. The fact that NR2A is more prominently distrib-
ted in the granular layer than in all other parts of the
livocerebellar system (Watanabe et al., 1992, 1994;
onyer et al., 1994) raises the possibility that the affected
hase reversal learning is a consequence of inefficient
TP induction at the mossy fiber to granule cell synapse.
owever, since the NR2A subunit is also expressed in
urkinje cells, molecular interneurons, and Golgi cells as
ell as in other neurons of the vestibulo-ocular pathway,

his potential causal relation awaits confirmation in cell-
pecific mutants.

The mossy fiber-granule cell synapse in the vestibulo-
erebellum shows the ability to potentiate and this form of
TP is manifested both as an increase in synaptic trans-
ission and in intrinsic excitability (D’Angelo et al., 1999;
rmano et al., 2000). The enhanced EPSP-spike coupling
bserved in wild type slices was probably determined by a
ombination of increased EPSPs and increased ability of
enerating spikes (for review see Hansel et al., 2001).
onversely, LTP was severely impaired in the NR2A�/�

ice, resembling the cell physiological phenotype ob-
erved in mice with an NR2A-NR2C C-terminal deletion
Rossi et al., 2002). Therefore, different mutations in the
MDA receptor cause a similar impairment in LTP induc-

ion at the mossy fiber to granule cell synapse suggesting
hat the common mechanism is a reduction in the effi-
iency of calcium entry during high-frequency repetitive

ated measures P value P value P value
day 1 day 2 day 3

cts 0.38 0.77 0.26
ffects 0.97 0.32 0.84
cts 0.33 0.41 0.22
ffects 0.24 0.79 0.87
cts 0.27 0.95 0.38
ffects 0.21 0.04 0.05
cts 0.60 0.06 0.49
ffects 0.12 0.02 0.03

risons are listed. All mutant mice were tested against their wild type
with repe

jects effe
ubjects e
jects effe
ubjects e
jects effe
ubjects e
jects effe
ubjects e

ct compa
ynaptic transmission (Gall et al., 2005).

of the N-methyl D-aspartate receptors are required for poten-
ar motor learning, Neuroscience (2011), doi: 10.1016/j.neuro-
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Interestingly, in the juvenile adult NR2A�/� mutant
P20) there is no LTP and there are no long-term changes
n intrinsic excitability (or even less than in wt), whereas in
he mature adult (P50) there is still no LTP, but there is an
vident change in intrinsic excitability. It is possible that the
ranule cells are partly compensating during postnatal
evelopment by reducing their inward rectifier current fol-

owing tetanization (Rossi et al., 2006). However, phase
eversal learning of the VOR never becomes optimal.
hus, if the observed cell physiological and behavioral
henotypes in the NR2A�/� mutants are causally related,

t is most likely the specific change in the individual syn-
ptic weights that matters. This change probably results in
n inability of the granule cell to fire multiple spikes (dou-
lets or triplets). Facilitated by compensatory non-synaptic
lasticity many granule cells may be able to generate
ingle spikes, but due to the lack of LTP induction the
atterns of their output lacking high-frequency patterns
emain abnormal.

Motor performance is not affected in our mouse mod-
ls, despite the absence or modification of NR2A in the
erebellar cortex (Monaghan and Cotman, 1985). Appar-
ntly, NR2As modulate mainly the effectiveness of plastic-

ty at the mossy fiber–granule cells synapse and control

Gain
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0.8
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day 1 day 2 day 3
Time

ig. 6. NMDA-NR2A�C/�C mutant mice also show a normal motor perfo
alues of the vestibular-ocular reflex (VOR; diamonds), of the optokin
t stimulus frequencies ranging from 0.2 to 1 Hz in NMDA-NR2A�C

R2A�C/�C mice are plotted. Empty symbols represent mutant mice
aradigm did not induce differences in gain reduction among NMDA–
everse their phase values but not as prominently as wild types. * P�0
gure legend, the reader is referred to the Web version of this article.
nly mildly the ability of the granule cells to convey infor- c
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ation from the mossy fibers to the cerebellar cortex (see
lso Rossi et al., 2002). Motor performance is generally the
onsequence of a long period of training and it is con-
tantly recalibrated by learning mechanisms in order to
eet the demands of a continuously changing environ-
ent. The multi-day, visuo-vestibular reversal training par-
digm is a challenging task and revealed that the ves-
ibulo-ocular system of our mutant mice has a limited ca-
ability in motor learning. These data are in line with other

nvestigations focused on classical conditioning pro-
esses. Mice lacking NR2A or both NR2A and NR2C have

mpaired eyeblink conditioning (Kishimoto et al., 1997),
hile systemic blocking of NMDA receptors by pharma-
eutical intervention has also been shown to impair eye-
link conditioning (Thompson and Disterhoft, 1997; Takat-
uki et al., 2001). Interestingly, when both the NR2A and
R2C subunits are affected, such as in the NR2A/C�C/�C

ouse (Kadotani et al., 1996; Imamura et al., 2000) or
R2A/C�/� mouse (Sprengel et al., 1998), the motor def-

cits are not restricted to motor learning deficits; in these
utants the motor performance is also impaired, which
akes it difficult to interpret the cause of the learning
isability. Fortunately, the present specific findings in the
R2A�/� mouse and NR2A�C/�C mutants allow us to ex-

Time
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*
*

while their ability for phase reversal learning is also affected. (A) Gain
x (OKR; circles) and of the visually increased VOR (VVOR; squares)
and wild type mice are presented. (B) Phase values from NMDA-

e filled symbols represent their wild type littermates (wt). (C) A 3 d
/�C mice and control mice. (D) NMDA-NR2A�C/�C mice were able to
a are mean�SEM. For interpretation of the references to color in this
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bellar learning deficits are not secondary to performance
eficits.

In both the NR2A�/� mouse and NR2A�C/�C mutants
he inefficient induction of LTP at the cerebellar mossy
ber–granule cell synapse is based on NMDA receptor
lteration. In the NR2A�/� mice, the NMDA current is
educed and has altered kinetics (Sprengel et al., 1998;
ossi et al., 2002). In the NR2A�C/�C mutants there is a
eficit in channel opening probability and in receptor cou-
ling to intracellular transduction pathways (Rossi et al.,
002). Thus, in the end, both mutations are likely to alter
ritical steps in NMDA receptor-dependent LTP induction
ying between the NMDA receptor and the biochemical

echanisms triggering LTP. By showing that both mutants
o not only share a similar deficit in LTP induction at the
ossy fiber to granule cell synapse, but also a similar
ehavioural phenotype, we promote the possibility that
lasticity in the granular layer also contributes to some
spects of cerebellar motor learning. Thus, the forms of
ellular plasticity that may underlay cerebellar motor learn-
ng may not be restricted to plasticity at the parallel fiber to
urkinje cell synapse, and/or to LTD and LTP at the cer-
bellar and vestibular nuclei downstream (Schonewille et
l., 2010; Ito, 1972; Miles and Lisberger, 1981; De Zeeuw
t al., 1998). How this contribution may come about mech-
nistically remains to be shown. LTP in the granule cells
ould play an important role in determining the efficacy of
ynaptic summation and the output spike frequency in the
ossy fiber to granule cell synapse during repetitive
ossy fibers activation (D’Angelo et al., 1995). LTP in the
ranule cells could thus contribute to the memory forma-
ion by controlling the diverse, temporal activity patterns of
ranule cells and by influencing the efficacy of information
ransmission to inhibitory neurons and Purkinje cells
D’Angelo and De Zeeuw, 2009). Future experiments in
ranule cell-specific transgenic mice are needed to further
larify an actual causal relationship between NMDA recep-
ors, LTP and VOR control.
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