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ABSTRACT
A framework to discriminate tactile stimuli delivered
to an artificial touch sensor is presented.

Following a neuromimetic approach, we encode the
signals from a 24-capacitive sensor fingertip into spik-
ing activity through a network of leaky integrate-and-
fire neurons. The activity resulting from the stimulation
of the touch sensor through Braille-like dot patterns is
then analysed by means of a newly defined Information
measure which explicitly takes into consideration the
metrics of the spike train space.

Results show that an optimal discrimination of the
entire set of 26 stimuli (i.e. 100% correct classification)
is reached early after the stimulus onset. Interestingly,
the method proves to be effective with both statically
and dynamically delivered stimulation which are hard
to decode because of the similarity between encoded
firing activity given to the proximity of the patterns
presented.

The decoding analysis allowed us to corroborate the
working hypothesis that human tactile discrimination
relies on optimal encoding/decoding processes already
at the level of the primary stage neurons in the so-
matosensory pathway.
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1. Introduction
Fast and reliable tactile discrimination plays a

paramount role in human behaviour in order to guaran-
tee rapid response and adaptation to stimuli delivered
to the fingertips [5]. Even simple object manipulation
requires the ability to identify the object’s properties
and perform optimal action selection based on closed-
loop control policies. The same holds for humanoid
robotics applications in which human-like haptic tasks
must rely on high stability, precision and adaptability of
the system. More specifically, at the early stages of the
ascending pathway, there must be a faithful encoding of
the tactile stimulations into populations of spike trains,
so that the central nervous system can actually decode
the signals and discriminate the stimulations.

Here we study how to decode spiking activity ob-
tained by encoding analogue data from an artificial
touch sensor. We show that, after stimulating the sensor
with Braille-like dot patterns both statically and dy-
namically (i.e. by rubbing the pattern over the finger),
it is possible to quickly recover the stimulus on both
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modality. Drawing inspiration from a study of human
haptic microneurography spiking data, we use a new
metrical information coupled with the Victor-Purpura
distance [15] to estimate the amount of information that
can be transmitted without burst of uncertainty on the
response to a single stimulus.

2. Methods
2.1 The encoding/decoding scheme

In Fig. 1 we show the entire encoding/decoding
scheme. After stimulating the artificial fingertip with
scaled Braille-character probes the analogue data were
converted into spiking activity through a network of
modified leaky integrate-and-fire neurons (LIF). The
obtained activity was then analysed through an Infor-
mation Theory based approach (cf. section 2.4) in
order to classify the response of the fingertip to both
static and dynamical stimuli.
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Fig. 1. The entire encoding/decoding process. After the conversion
of the finger output signals into spike trains, the information theo-
retical method is applied in order to discriminate between different
stimuli.

2.2 The artificial fingertip

The skin prototype was developed at the Italian
Institute of Technology (IIT, Genoa, Italy) as a small-
scale improvement of a previously presented artificial
skin [3]. The entire artificial finger has a sensitive
surface of approximately 18 mm x 23 mm. It consists
of 24 capacitive square sensors disposed according to a
rectangular grid layout. The dimension of each sensor
is approximately 3 mm and the inter-centre distance is
4 mm (Fig. 2).
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Fig. 2. Left: The artificial fingertip consisting of an array of 24
capacitive sensors. Right: Design of the fingertip.



The array is covered by a 2.5 mm thick neoprene
layer in order to modulate the pressure exerted over
the sensors. The higher the indentation of a conductive
material on the neoprene is, the stronger the response
of the sensors. The response strength of each sensor
ranges between 0 and 189 fF.

2.3 The analog-to-spike conversion method

A network of 24 modified leaky integrate-and-fire
neurons [6] was modeled to convert the analogue
signals provided by the artificial skin after stimulation
into spatiotemporal spike patterns (Fig. 3).
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Fig. 3. Spike trains obtained through the encoding process of
analogue signals. The response of 8 sensors to a single probe
stimulation repeated 13 times is reported.

2.3.1 The spiking neural network: Let Vleak, Vthr,
Vreset and I(t) denote the resting membrane potential,
the firing threshold, the reset potential, and the total
synaptic input of a neuron, respectively. The dynamics
of the membrane potential V (t) was defined according
to:

C · dV (t)

dt
= −g · (V (t)− Vleak)− I(t) (1)

with C and g being the membrane capacitance and
leak conductance, respectively. We took Vleak = −70
mV, Vthr = −50 mV, and Vreset = −100 mV for
all neurons of the model. The membrane capacitance
C was taken equal to 0.5 nF, and the conductance g
equal to 25 nS. Thus, the membrane time constant was
τ = C/g = 20 ms. Whenever the membrane potential
V (t) reached the threshold Vthr the neuron emitted
one spike. Then, its membrane potential was reset to
Vreset and the dynamics of V (t) was frozen during
a refractory period ∆tref = 2 ms. A basic “threshold
fatigue” [4] was also implemented in order to model the
phenomenon of “habituation”. It consisted in increasing
the threshold Vthr of a value Athr each time the neuron
spiked, making it harder for the neuron to spike again
(i.e. preventing the neuron from responding highly
tonically even in the presence of strong inputs). In the
absence of spikes, the threshold decreased exponen-
tially back to its resting value VrestThr:

dVthr(t)

dt
= −Vthr(t)− VrestThr

τthr
(2)

The parameter values we used were τthr = 100 ms,
VrestThr = −50.0 mV and Athr = 50.0 mV. Eqs. 1
and 2 were integrated using Runge-Kutta 2 and a
timestep of 1 ms.
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Fig. 4. (a) The input of each LIF neuron was computed on the
basis of its receptive field. (b) Examples of Gaussian receptive fields.
Left: standard deviation = 0.6. Right: standard deviation = 1.2.
(c) Examples of Heaviside receptive fields. Left: radius < 1 (Dirac
equivalent). Right: radius = 1.

2.3.2 The receptive fields: Each neuron i received
a driving input based on its receptive field function,
which was used to sample the data space similar to a
kernel basis function (Fig. 4a). The input I(t) was then
simply taken as:

I(t) =
∑
j

wij · dj (3)

with wij representing the weight of the “connection”
from a capacitive sensor j to the neuron, and dj being
the analogue value of the fingertip sensor. Two types
of receptive fields were implemented and tested: the
Gaussian function and the Heaviside kernel (Fig. 4b and
4c). The weights wj were normalised to obtain a global
maximum weight defined by a constant W =

∑
j wj .

Given the properties of the artificial fingertip and the di-
mension and property of each sensors (cf. section 3.1)
the results we present were obtained using a Gaussian
kernel with radius � 1 approximately equivalent to an
Heaviside kernel with radius < 1 (Fig. 4).

2.4 Information-theoretic measure
Mutual information (MI) [10], [13] measures the

interdependence of two random variables and it was
defined by Shannon as follows:

MI(s; r) =
∑
s

∑
r

p(r, s) log
p(r, s)

p(r)p(s)
(4)

where r denotes the response to a given stimulus s.
In the classical Shannon definition, the terms p(s) and
p(r) are the marginal probabilities of stimulus and



response, respectively, p(r, s) is their joint probability,
and p(r|s) indicates the conditional probability.

In order to decode the neural activity and discrim-
inate between different stimuli, we applied a novel
information theoretical measure MI(R;S)∗ following
two new definitions for the marginal and conditional
entropy defined as H(R)∗ and H∗(R|S) respectively.
Such an information measure, which has been proven to
be suitable to decode the responses of real mechanore-
ceptors obtained via microneurography recordings in
humans [2], was derived analytically. It takes into
account the metrical properties of the spike train space
[12], [14] in order to circumvent the problem related
to binning procedures encountered when applying in-
formation theoretic analysis [9], [7].

2.4.1 Victor-Purpura distance: The metrics we
chose is the Victor-Purpura spike train metrics [15]
which defines the distance between two spike trains as
the minimum cost of the operations needed to transform
one spike train into the other. Briefly, the three allowed
operations and their respective costs are:

the insertion of a single spike at a fixed cost of 1,
the deletion of a single spike at a fixed cost of 1,
the displacement in time of one spike for a cost
that grows linearly with the temporal shift. This
cost depends on the parameter CV P which has to
be appropriately chosen. According to the given
definition, moving a spike by an interval ∆t will
cost CV P ·∆t.

In order to extend this metrics to a neural population
we simply summed individual distances over each
neuron of the network to obtain the population distance
DV P (r, r′). We then used such a distance to compute
the degree of similarity between responses elicited
by the same stimulus (i.e. intrastimulus distance) and
responses elicited by different stimuli (i.e. interstimulus
distance).

2.4.2 Metrical Information: The novel measure we
used for the marginal entropy, namely the uncertainty
on the response to the whole stimulus set, is formalised
as follows:

H∗(R) = −
∑
r∈R

1

|R|
log

∑
r′∈R

< r|r′ >
|R|

(5)

where < r|r′ > is a similarity measure between two
responses r and r′ (see below). Then, the metrical
conditional entropy, indicating the uncertainty on the
response to a single stimulus, is defined as:

H∗(R|S) =
∑
s∈S

p(s)H∗(R|s) = (6)

−
∑
s∈S

p(s)
∑
r∈Rs

1

|Rs|
log

∑
r′∈Rs

< r|r′ >
|Rs|

(7)

Finally, the metrical information is defined, following
the Shannon’s definition, as the difference between the
marginal and conditional entropies:

I∗(R;S) = H∗(R)−H∗(R|S) (8)

The similarity measure < r|r′ > is defined as a
function of the VP distance DV P (r, r′) between two

population responses r and r′. More specifically, we
defined < r|r′ > as follows:

< r|r′ >= 1 ⇐⇒ DV P (r, r′) < Dcritic (9)

where the critical distance Dcritic is a free parameter,
interdependent to CV P , that needs to be determined
properly. More specifially, in order to determine the
optimal values for Dcritic and CV P we computed the
minimum and maximum interstimuli and intrastimuli
distances. According to the novel information theoreti-
cal measures, a perfect discrimination between different
stimuli, which corresponds to maximal I∗(R;S) and
zero H∗(R|S) occurs when the maximum intrastimuli
distance becomes smaller than the minimal intrerstim-
ulus distance. This means that all the responses to a
given stimulus should lie in a region of space whose
size is smaller than the distance to the closest response
to another stimulus.

2.5 Experimental protocols
Four different experimental protocols were applied

to the sensor array in order to both characterise its
properties and collect a data benchmark to which
apply the discrimination method (cf. section 2.5). The
1st experimental session aimed at characterising the
response of the device with respect to the strength
and position of the stimulus so to precisely define the
receptive field of each sensor. A single 4 mm-diameter
cylindrical probe, mounted on a load cell, was used to
indent the neoprene. The touch sensor was stimulated
at 6161 different positions over the entire array surface
according to a regular grid layout (i.e. 0.2 mm step).
During the 2nd session, the same probe was rubbed
over the entire finger at constant force amplitude. The
protocol was repeated at two different sliding velocities
in order to test the response of the finger. The 3rd and
the 4th sessions aimed at emulating Braille-like reading
tasks. In the 3rd session a set of 26 probes reproducing
a scaled version (1:3) of the Braille alphabet was used
as stimulation probe. All the patterns where indented
three times at two different alignments with respect to
the sensor array (156 static presentations). During the
4th session, the set of 26 single characters were rubbed
over the fingertip three times at two different velocities
and two different alignments (444 dynamical pattern
presentations).

3. Results
3.1 Fingertip characterization

A characterization of the basic properties of the
fingertip responses is reported in Fig. 5. The results
refer to data collected when the probe was entirely in-
dented into the neoprene. Each of the 24 sensors shows
a high signal-to-noise ratio (50dB) and a Gaussian-
shaped receptive field with amplitude 200 fF ± 3.3
std and width 2.5 mm ± 0.044 std. We also report the
fitted responses of 4 adjacent sensors positioned at the
center of the finger. The fitting procedure clearly shows
the stability of the device whose sensors respond in a
similar way regardless of the position they have in the
finger layout. It is also possible to observe the degree



of overlapping between sensors’ receptive fields. As a
supplementary analysis, the fitting procedure was also
perfomed by reading out the analogue signals at differ-
ent indentation levels of the probe. The same gaussian
shape of the response with equal receptive field widths
and amplitude proportional to the indentation of the
probe was observed (data not shown).
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Fig. 5. Top: Normalised receptive field of a single sensor obtained
by sampling its response at 6161 different positions over the entire
array (axis dimensions were normalised). Bottom: Gaussian fitting
of the response of 4 sensors along a line.

3.2 Encoding of analogue data into spiking activity
We report in Fig. 6 two examples of spiking activity

obtained after encoding the analogue data obtained
upon stimulation of the fingertip with a scaled Braille
“F” character. One can clearly observe that firing rates
change according to the strength of the stimulation
delivered to the sensors. In fact, the closer is the probe
to a sensor the stronger is its analogue response driving
to a higher firing activity of the neurons encoding its
signal. Moreover, given the dynamics governing the
LIF neurons, a longer stimulation induces a constantly
substained firing activity as shown in the raster plot
obtained from the static stimulation. Here, the three
neurons encoding the activity of the channels which
were closer to the probe show a bursting activity
unobserved from the others. Furthermore, it can be
noticed how in the actvity encoded upon dynamical
stimulation the firing patterns of the most solicited
neurons change in time as the probe is rubbed. Such
a change reproduce a topological mapping which links
the activity of the neurons to the area of stimulation.
A similar behaviour has been observed for a particular
type of human fingertip mechanoreceptors (i.e. SAI)

measured in experiments involving Braille character
scanning [8]. In order to apply the information-theory
method, for both the static and dynamic protocols we
generated 100 activity patterns for each character by
taking the activity encoded from one of the performed
experiments and adding a 3 mm jitter to each spike
from a uniform distribution.
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Fig. 6. Spiking activity of the LIF neural network after enconding
the analogue data of the fingertip in response to stimulation through
the ”F“ Braille character. Top: raster obtained after static stimulation
encoding. One can observe that neurons 12, 22 and 24, encoding the
activiy of sensors named 12, 22, and 24 in the touch sensor layout
(Fig. 2) show high firing rates because of the proximity of such
sensors with the stimulation probe. Differently, the other neurons
show an extremely low firing rate (if any) because they take into
account capacitive signals mainly due to noisy effect given to the
indentation of the probe into the fingerip. Bottom: raster obtained
after dynamical stimulation encoding. As for static stimulation few
neurons are more solicited than the others but, in this case, the firing
patterns change in time clearly following the movement of the probe
while it is rubbed over the finger. Also in this case noisy effect are
observed, which are higher than in the static stimulaion because of the
strongest solicitation all the sensors undergo during the movement of
the probe. Nonetheless, one can clearly distinguish the high activity
of the neurons whose solicitation is given by a wider indentation of
the probe with respect to the ones undergoing only noisy effects.

3.3 Statically delivered stimuli data
In Fig. 7 we report the results of the discrimination

of all Braille alphabet letters statically delivered to
the fingertip. Only the first spike waves were taken
into consideration for the decoding analysis in order to
demonstrate the high information content in the timing
of the first spikes as reported in previous works [1],
[11]. Due to the use of the novel metrical information
measure (cf. section 2.4), a perfect discrimination is
possible very early with respect to the stimulus onset
(i.e. after 120 ms). This results extend to artificial
data previous observations in human microneurography
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Fig. 7. Top: Metrical Mutual Information (i.e. MI∗) and Con-
ditional Entropy (i.e. H∗(R|S)) are reported over time. The cho-
sen Victor-Purpura cost CV P 0.085. The optimal discrimination
criterion, namely maximum information and minimum conditional
entropy, occurs after 120 ms from the stimulus onset. Center: In-
trastimuli and interstimuli distances evolve in time as a higher number
of spikes are recruited for the analsys. A perfect discrimination
occurs at 120 ms when the minimum interstimuli distance has
becomes bigger than the maximum intrastimuli one. Bottom: The
distance matrix for all stimuli responses is reported. Low diagonal
values can be observed corresponding to small differences between
responses to the same stimulus. At the same time, the higher is the
difference between the delivered stimulation patterns, the bigger are
the distances between the responses.

data in which the stimulus source could be perfectly
discriminated in few tens of milliseconds [2], [1]. Fur-
thermore, we compared the results obtained with both
the metrical information we presented and the classical
Shannon information definition. We observed that our
method always outperformed the classical definition
with respect to the time the perfect discrimination was
reached. Such an outcome is particularly encouraging
for robotic application where a fast response to external
stimuli is required. Furthermore, a spike based discrim-
ination method allows to exploit the complexity of the
neural code by taking advantage of the variety of both
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Fig. 8. Top: Metrical Mutual Information (i.e. MI∗) and Condi-
tional Entropy (i.e. H∗(R|S)) are reported over time. The chosen
Victor-Purpura cost CV P was 0.085. As for the static stimulation,
the optimal discrimination criterion (i.e. maximum information and
minimum conditional entropy) is reached after 500 ms. Center: The
minimum interstimuli distance overcomes the maximum intrastimuli
one at 500 ms. Bottom: The distance matrix for all stimuli responses
is reported. As already observed for the static stimulation protocol,
small distances are typical of responses to the same stimulus (diag-
onal values) while different stimuli induce higher distances in the
spike train space.

the spatial and temporal dynamics of firing patterns in
populations of neurons.

3.4 Dynamically delivered stimuli data

In Fig. 8 the results concerning the discrimination
of all Braille alphabet letters dynamically delivered are
reported. Given the different nature of the experiments,
the need is to analyse the firing pattern over stimulation
time as it changes together with the position of the
probe. More specifically, each sensor affected by the
stimulus undergoes a response transient which depends
on the indentation level, velocity of the probe and
duration of the stimulation. Such transient is reflected
also by the spiking activity in terms of firing frequency
over time and individual spike jitter. Hence, differ-



ently from the static protocol, the entire spike train
of each neuron was taken into consideration for the
decoding analysis and not only the firts spike wave.
Also in this case, as shown for the static stimulus, a
perfect discrimination is possible once the minimum
interstimuli has overcome the maximum intrastimuli
distance (cf. section 2.4). Again, the latter condition is
verified very early after the stimulus onset at around
500 ms when maximum information and minimum
conditional entropy occur. It should be remarked that
the method we used proves to be particularly powerful
even in the presence of long spike trains. In fact, as
a higher number of spike is considered the computed
interstimuli and intrastimuli distances tends to create
wider clusters of responses whose overlapping tends
to be more probable. Nonetheless, the choice of an
appropriate cost CV P and the consequent derivation of
the Dcritic leads to a perfect discrimination of the entire
dynamical stimuli set.

4. Conclusions
A framework for the encoding/decoding process of

artificial tactile signals is presented. The main result of
the presented study is the fast and optimal discrimi-
nation of Braille-like stimulation patterns delivered to
an artificial touch sensor. With the aim of mimicking
the skin mechanoreceptor dynamics, the analogue data
from the fingertip were encoded through a biologically
inspired network of leaky integrate-and-fire neurons
able to collect the activity of the sensors according to
a specific receptive field. The encoded signals reflected
the property of the tactile stimulation and were decoded
on the basis of a newly defined information measure
based on the metrical property of the spike train space.
Such a measure allowed to perform a perfect discrim-
ination (i.e. 100% patterns correctly classified) early
after the stimulus onset (i.e. 120 ms for static stimuli
and 500 ms for dynamical stimuli). Given the prop-
erties of the framework we propose and the efficacy
of the encoding/decoding process, mostly interestingly
with respect to the early discrimination capability, we
envisage the study carried out as a possible starting
point for real time robotic applications in which a fast
and reliable discrmination of external sensory stimuli
is required.
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